{"title":"注意能力与视觉运动对虚拟现实驾驶模拟器的适应有关。","authors":"Régis Lobjois, Sami Mecheri","doi":"10.1038/s41598-024-79392-1","DOIUrl":null,"url":null,"abstract":"<p><p>Studies have shown that adaptation to a virtual reality driving simulator takes time and that individuals differ widely in the time they need to adapt. The present study examined the relationship between attentional capacity and driving-simulator adaptation, with the hypothesis that individuals with better attentional capacity would exhibit more efficient adaptation to novel virtual driving circumstances. To this end, participants were asked to steer in a driving simulator through a series of 100 bends while keeping within a central demarcated zone. Adaptation was assessed from changes in steering behavior (steering performance: time spent within the zone, steering stability, steering reversal rate) over the course of the bends. Attentional capacity was assessed with two dynamic visual attention tasks (Multiple Object Tracking, MOT; Multiple Object Avoidance, MOA). Results showed effective adaptation to the simulator with repetition, as all steering-behavior variables improved. Both MOT and MOA scores significantly predicted adaptation, with MOT being a stronger predictor. Further analyses revealed that higher-capacity participants, but not their lower-capacity counterparts, produced more low-amplitude steering-wheel corrections early in the task, resulting in finer vehicle control and better performance later on. These findings provide new insights into adaptation to virtual reality simulators through the lens of attentional capacity.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"14 1","pages":"28991"},"PeriodicalIF":3.8000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11584864/pdf/","citationCount":"0","resultStr":"{\"title\":\"Attentional capacity matters for visuomotor adaptation to a virtual reality driving simulator.\",\"authors\":\"Régis Lobjois, Sami Mecheri\",\"doi\":\"10.1038/s41598-024-79392-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Studies have shown that adaptation to a virtual reality driving simulator takes time and that individuals differ widely in the time they need to adapt. The present study examined the relationship between attentional capacity and driving-simulator adaptation, with the hypothesis that individuals with better attentional capacity would exhibit more efficient adaptation to novel virtual driving circumstances. To this end, participants were asked to steer in a driving simulator through a series of 100 bends while keeping within a central demarcated zone. Adaptation was assessed from changes in steering behavior (steering performance: time spent within the zone, steering stability, steering reversal rate) over the course of the bends. Attentional capacity was assessed with two dynamic visual attention tasks (Multiple Object Tracking, MOT; Multiple Object Avoidance, MOA). Results showed effective adaptation to the simulator with repetition, as all steering-behavior variables improved. Both MOT and MOA scores significantly predicted adaptation, with MOT being a stronger predictor. Further analyses revealed that higher-capacity participants, but not their lower-capacity counterparts, produced more low-amplitude steering-wheel corrections early in the task, resulting in finer vehicle control and better performance later on. These findings provide new insights into adaptation to virtual reality simulators through the lens of attentional capacity.</p>\",\"PeriodicalId\":21811,\"journal\":{\"name\":\"Scientific Reports\",\"volume\":\"14 1\",\"pages\":\"28991\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11584864/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientific Reports\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41598-024-79392-1\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-024-79392-1","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Attentional capacity matters for visuomotor adaptation to a virtual reality driving simulator.
Studies have shown that adaptation to a virtual reality driving simulator takes time and that individuals differ widely in the time they need to adapt. The present study examined the relationship between attentional capacity and driving-simulator adaptation, with the hypothesis that individuals with better attentional capacity would exhibit more efficient adaptation to novel virtual driving circumstances. To this end, participants were asked to steer in a driving simulator through a series of 100 bends while keeping within a central demarcated zone. Adaptation was assessed from changes in steering behavior (steering performance: time spent within the zone, steering stability, steering reversal rate) over the course of the bends. Attentional capacity was assessed with two dynamic visual attention tasks (Multiple Object Tracking, MOT; Multiple Object Avoidance, MOA). Results showed effective adaptation to the simulator with repetition, as all steering-behavior variables improved. Both MOT and MOA scores significantly predicted adaptation, with MOT being a stronger predictor. Further analyses revealed that higher-capacity participants, but not their lower-capacity counterparts, produced more low-amplitude steering-wheel corrections early in the task, resulting in finer vehicle control and better performance later on. These findings provide new insights into adaptation to virtual reality simulators through the lens of attentional capacity.
期刊介绍:
We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections.
Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021).
•Engineering
Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live.
•Physical sciences
Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics.
•Earth and environmental sciences
Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems.
•Biological sciences
Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants.
•Health sciences
The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.