综述聚乳酸的合成、特性和各种应用,重点是食品包装应用。

IF 7.7 1区 化学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
C S Reshma, S Remya, J Bindu
{"title":"综述聚乳酸的合成、特性和各种应用,重点是食品包装应用。","authors":"C S Reshma, S Remya, J Bindu","doi":"10.1016/j.ijbiomac.2024.137905","DOIUrl":null,"url":null,"abstract":"<p><p>Polylactic acid (PLA) is an aliphatic polyester, which is primarily synthesized from renewable resources through the polycondensation or ring-opening polymerization of lactic acid (LA)/lactide. LA can be conveniently produced via the fermentation of sugars obtained from renewable sources such as corn and sugar cane. Due to its biodegradable and biocompatible nature, PLA exhibits a vast range of applications. Its advantages include non-toxicity, environmental safety, and compatibility with human biological systems. PLA finds significant use in various biomedical applications, including implants, tissue engineering, sutures, and drug delivery systems. Additionally, PLA serves as a renewable and biodegradable polymer of extensive utility in film production, offering an alternative to petrochemical-based polymers. Moreover, the properties of PLA-based films can be tailored by incorporating extracts, polysaccharides, proteins, and nano-particles. This review encompasses LA production, PLA synthesis, and diverse applications of PLA and further explores the potential of PLA in the realm of packaging.</p>","PeriodicalId":333,"journal":{"name":"International Journal of Biological Macromolecules","volume":" ","pages":"137905"},"PeriodicalIF":7.7000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A review of exploring the synthesis, properties, and diverse applications of poly lactic acid with a focus on food packaging application.\",\"authors\":\"C S Reshma, S Remya, J Bindu\",\"doi\":\"10.1016/j.ijbiomac.2024.137905\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Polylactic acid (PLA) is an aliphatic polyester, which is primarily synthesized from renewable resources through the polycondensation or ring-opening polymerization of lactic acid (LA)/lactide. LA can be conveniently produced via the fermentation of sugars obtained from renewable sources such as corn and sugar cane. Due to its biodegradable and biocompatible nature, PLA exhibits a vast range of applications. Its advantages include non-toxicity, environmental safety, and compatibility with human biological systems. PLA finds significant use in various biomedical applications, including implants, tissue engineering, sutures, and drug delivery systems. Additionally, PLA serves as a renewable and biodegradable polymer of extensive utility in film production, offering an alternative to petrochemical-based polymers. Moreover, the properties of PLA-based films can be tailored by incorporating extracts, polysaccharides, proteins, and nano-particles. This review encompasses LA production, PLA synthesis, and diverse applications of PLA and further explores the potential of PLA in the realm of packaging.</p>\",\"PeriodicalId\":333,\"journal\":{\"name\":\"International Journal of Biological Macromolecules\",\"volume\":\" \",\"pages\":\"137905\"},\"PeriodicalIF\":7.7000,\"publicationDate\":\"2024-11-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Biological Macromolecules\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1016/j.ijbiomac.2024.137905\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Biological Macromolecules","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.ijbiomac.2024.137905","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

聚乳酸(PLA)是一种脂肪族聚酯,主要通过乳酸(LA)/内酯的缩聚或开环聚合从可再生资源中合成。通过发酵从玉米和甘蔗等可再生资源中获得的糖,可以方便地生产出 LA。由于聚乳酸具有生物降解性和生物相容性,其应用范围十分广泛。其优点包括无毒性、环境安全性以及与人体生物系统的兼容性。聚乳酸在各种生物医学应用中都有重要用途,包括植入物、组织工程、缝合线和给药系统。此外,聚乳酸是一种可再生、可生物降解的聚合物,在薄膜生产中用途广泛,是石化基聚合物的替代品。此外,还可以通过加入提取物、多糖、蛋白质和纳米颗粒来定制聚乳酸薄膜的特性。本综述涵盖了聚乳酸的生产、合成和各种应用,并进一步探讨了聚乳酸在包装领域的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A review of exploring the synthesis, properties, and diverse applications of poly lactic acid with a focus on food packaging application.

Polylactic acid (PLA) is an aliphatic polyester, which is primarily synthesized from renewable resources through the polycondensation or ring-opening polymerization of lactic acid (LA)/lactide. LA can be conveniently produced via the fermentation of sugars obtained from renewable sources such as corn and sugar cane. Due to its biodegradable and biocompatible nature, PLA exhibits a vast range of applications. Its advantages include non-toxicity, environmental safety, and compatibility with human biological systems. PLA finds significant use in various biomedical applications, including implants, tissue engineering, sutures, and drug delivery systems. Additionally, PLA serves as a renewable and biodegradable polymer of extensive utility in film production, offering an alternative to petrochemical-based polymers. Moreover, the properties of PLA-based films can be tailored by incorporating extracts, polysaccharides, proteins, and nano-particles. This review encompasses LA production, PLA synthesis, and diverse applications of PLA and further explores the potential of PLA in the realm of packaging.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Biological Macromolecules
International Journal of Biological Macromolecules 生物-生化与分子生物学
CiteScore
13.70
自引率
9.80%
发文量
2728
审稿时长
64 days
期刊介绍: The International Journal of Biological Macromolecules is a well-established international journal dedicated to research on the chemical and biological aspects of natural macromolecules. Focusing on proteins, macromolecular carbohydrates, glycoproteins, proteoglycans, lignins, biological poly-acids, and nucleic acids, the journal presents the latest findings in molecular structure, properties, biological activities, interactions, modifications, and functional properties. Papers must offer new and novel insights, encompassing related model systems, structural conformational studies, theoretical developments, and analytical techniques. Each paper is required to primarily focus on at least one named biological macromolecule, reflected in the title, abstract, and text.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信