SARS-CoV-2 的进化平衡了 N 蛋白磷酸化的冲突作用。

IF 5.5 1区 医学 Q1 MICROBIOLOGY
Abdullah M Syed, Alison Ciling, Irene P Chen, Christopher R Carlson, Armin N Adly, Hannah S Martin, Taha Y Taha, Mir M Khalid, Nathan Price, Mehdi Bouhaddou, Manisha R Ummadi, Jack M Moen, Nevan J Krogan, David O Morgan, Melanie Ott, Jennifer A Doudna
{"title":"SARS-CoV-2 的进化平衡了 N 蛋白磷酸化的冲突作用。","authors":"Abdullah M Syed, Alison Ciling, Irene P Chen, Christopher R Carlson, Armin N Adly, Hannah S Martin, Taha Y Taha, Mir M Khalid, Nathan Price, Mehdi Bouhaddou, Manisha R Ummadi, Jack M Moen, Nevan J Krogan, David O Morgan, Melanie Ott, Jennifer A Doudna","doi":"10.1371/journal.ppat.1012741","DOIUrl":null,"url":null,"abstract":"<p><p>All lineages of SARS-CoV-2, the coronavirus responsible for the COVID-19 pandemic, contain mutations between amino acids 199 and 205 in the nucleocapsid (N) protein that are associated with increased infectivity. The effects of these mutations have been difficult to determine because N protein contributes to both viral replication and viral particle assembly during infection. Here, we used single-cycle infection and virus-like particle assays to show that N protein phosphorylation has opposing effects on viral assembly and genome replication. Ancestral SARS-CoV-2 N protein is densely phosphorylated, leading to higher levels of genome replication but 10-fold lower particle assembly compared to evolved variants with low N protein phosphorylation, such as Delta (N:R203M), Iota (N:S202R), and B.1.2 (N:P199L). A new open reading frame encoding a truncated N protein called N*, which occurs in the B.1.1 lineage and subsequent lineages of the Alpha, Gamma, and Omicron variants, supports high levels of both assembly and replication. Our findings help explain the enhanced fitness of viral variants of concern and a potential avenue for continued viral selection.</p>","PeriodicalId":48999,"journal":{"name":"PLoS Pathogens","volume":"20 11","pages":"e1012741"},"PeriodicalIF":5.5000,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"SARS-CoV-2 evolution balances conflicting roles of N protein phosphorylation.\",\"authors\":\"Abdullah M Syed, Alison Ciling, Irene P Chen, Christopher R Carlson, Armin N Adly, Hannah S Martin, Taha Y Taha, Mir M Khalid, Nathan Price, Mehdi Bouhaddou, Manisha R Ummadi, Jack M Moen, Nevan J Krogan, David O Morgan, Melanie Ott, Jennifer A Doudna\",\"doi\":\"10.1371/journal.ppat.1012741\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>All lineages of SARS-CoV-2, the coronavirus responsible for the COVID-19 pandemic, contain mutations between amino acids 199 and 205 in the nucleocapsid (N) protein that are associated with increased infectivity. The effects of these mutations have been difficult to determine because N protein contributes to both viral replication and viral particle assembly during infection. Here, we used single-cycle infection and virus-like particle assays to show that N protein phosphorylation has opposing effects on viral assembly and genome replication. Ancestral SARS-CoV-2 N protein is densely phosphorylated, leading to higher levels of genome replication but 10-fold lower particle assembly compared to evolved variants with low N protein phosphorylation, such as Delta (N:R203M), Iota (N:S202R), and B.1.2 (N:P199L). A new open reading frame encoding a truncated N protein called N*, which occurs in the B.1.1 lineage and subsequent lineages of the Alpha, Gamma, and Omicron variants, supports high levels of both assembly and replication. Our findings help explain the enhanced fitness of viral variants of concern and a potential avenue for continued viral selection.</p>\",\"PeriodicalId\":48999,\"journal\":{\"name\":\"PLoS Pathogens\",\"volume\":\"20 11\",\"pages\":\"e1012741\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2024-11-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PLoS Pathogens\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1371/journal.ppat.1012741\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS Pathogens","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1371/journal.ppat.1012741","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

导致 COVID-19 大流行的冠状病毒 SARS-CoV-2 的所有品系都含有核壳(N)蛋白 199 至 205 氨基酸之间的突变,这些突变与感染力增强有关。这些突变的影响一直难以确定,因为在感染过程中,N 蛋白对病毒复制和病毒粒子组装都有贡献。在这里,我们使用单循环感染和病毒样颗粒试验来证明 N 蛋白磷酸化对病毒组装和基因组复制具有相反的影响。与N蛋白磷酸化程度低的进化变体(如Delta(N:R203M)、Iota(N:S202R)和B.1.2(N:P199L))相比,原始SARS-CoV-2 N蛋白磷酸化程度高,导致基因组复制水平高,但颗粒组装水平低10倍。一个新的开放阅读框编码一种被称为 N* 的截短 N 蛋白,它出现在 B.1.1 系以及随后的 Alpha、Gamma 和 Omicron 变体系中,支持高水平的组装和复制。我们的发现有助于解释令人担忧的病毒变异体的适应性增强以及病毒继续选择的潜在途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
SARS-CoV-2 evolution balances conflicting roles of N protein phosphorylation.

All lineages of SARS-CoV-2, the coronavirus responsible for the COVID-19 pandemic, contain mutations between amino acids 199 and 205 in the nucleocapsid (N) protein that are associated with increased infectivity. The effects of these mutations have been difficult to determine because N protein contributes to both viral replication and viral particle assembly during infection. Here, we used single-cycle infection and virus-like particle assays to show that N protein phosphorylation has opposing effects on viral assembly and genome replication. Ancestral SARS-CoV-2 N protein is densely phosphorylated, leading to higher levels of genome replication but 10-fold lower particle assembly compared to evolved variants with low N protein phosphorylation, such as Delta (N:R203M), Iota (N:S202R), and B.1.2 (N:P199L). A new open reading frame encoding a truncated N protein called N*, which occurs in the B.1.1 lineage and subsequent lineages of the Alpha, Gamma, and Omicron variants, supports high levels of both assembly and replication. Our findings help explain the enhanced fitness of viral variants of concern and a potential avenue for continued viral selection.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
PLoS Pathogens
PLoS Pathogens MICROBIOLOGY-PARASITOLOGY
自引率
3.00%
发文量
598
期刊介绍: Bacteria, fungi, parasites, prions and viruses cause a plethora of diseases that have important medical, agricultural, and economic consequences. Moreover, the study of microbes continues to provide novel insights into such fundamental processes as the molecular basis of cellular and organismal function.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信