Minoo Tasbihi, Sunil Kwon, Bumsoo Kim, Daniel Brüggemann, Heting Hou, Jiasheng Lu, Raffaele Amitrano, Thomas Grimm, Jordi García-Antón, Peter Strasser, Sebastian L. Riedel, Michael Schwarze
{"title":"用于制氢的聚羟基钾酸酯辅助光催化二氧化钛薄膜","authors":"Minoo Tasbihi, Sunil Kwon, Bumsoo Kim, Daniel Brüggemann, Heting Hou, Jiasheng Lu, Raffaele Amitrano, Thomas Grimm, Jordi García-Antón, Peter Strasser, Sebastian L. Riedel, Michael Schwarze","doi":"10.1021/acs.langmuir.4c02727","DOIUrl":null,"url":null,"abstract":"The photocatalytic production of hydrogen using biopolymer-immobilized titanium dioxide (TiO<sub>2</sub>) is an innovative and sustainable approach to renewable energy generation. TiO<sub>2</sub>, a well-known photocatalyst, benefits from immobilization on biopolymers due to its environmental friendliness, abundance, and biodegradability. In another way, to boost the efficiency of TiO<sub>2</sub>, its surface properties can be modified by incorporating co-catalysts like platinum (Pt) to improve charge separation. In this work, the surface of commercial TiO<sub>2</sub> PC500 was modified with Pt nanoparticles (Pt1%@PC500) and then immobilized on glass surfaces using polyhydroxyalkanoate biopolymer poly(hydroxybutyrate-<i>co</i>-hydroxyhexanoate) (PHBH). The as-prepared immobilized Pt-modified TiO<sub>2</sub> photocatalysts were fully characterized using various physicochemical techniques. The photocatalytic activity of the photocatalyst film was investigated for photocatalytic hydrogen production through water reduction using ethanol as a sacrificial donor. The impact of the film preparation conditions, e.g., PHBH concentration, PHBH:catalyst ratio, and temperature, on activity and stability was studied in detail. The application of biopolymer PHBH as a binder provides a green alternative to conventional immobilization methods, and with the application of PHBH, a stable and active photocatalyst film that showed lower activity compared to that of the suspended photocatalyst but good recyclability in six runs was prepared. A long-term photocatalytic hydrogen production experiment was carried out. In 98 h of operation, 12 mmol of hydrogen was produced in three consecutive runs with a PHBH/Pt1%@PC500 film having an area of ∼5.3 cm<sup>2</sup>. A significantly lower hydrogen productivity was observed after the first run, possibly due to a change in film structure, but thereafter, the productivity remained almost constant for the second and third runs. Hydrogen was the main product in the gas phase (90%), but carbon dioxide (4–5%) and methane (4–5%) were obtained as important byproducts. The byproducts are a consequence of the use of the sacrificial reagent ethanol. The results of the film performance are very promising, with regard to large-scale continuous hydrogen production.","PeriodicalId":50,"journal":{"name":"Langmuir","volume":"19 1","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Polyhydroxykanoate-Assisted Photocatalytic TiO2 Films for Hydrogen Production\",\"authors\":\"Minoo Tasbihi, Sunil Kwon, Bumsoo Kim, Daniel Brüggemann, Heting Hou, Jiasheng Lu, Raffaele Amitrano, Thomas Grimm, Jordi García-Antón, Peter Strasser, Sebastian L. Riedel, Michael Schwarze\",\"doi\":\"10.1021/acs.langmuir.4c02727\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The photocatalytic production of hydrogen using biopolymer-immobilized titanium dioxide (TiO<sub>2</sub>) is an innovative and sustainable approach to renewable energy generation. TiO<sub>2</sub>, a well-known photocatalyst, benefits from immobilization on biopolymers due to its environmental friendliness, abundance, and biodegradability. In another way, to boost the efficiency of TiO<sub>2</sub>, its surface properties can be modified by incorporating co-catalysts like platinum (Pt) to improve charge separation. In this work, the surface of commercial TiO<sub>2</sub> PC500 was modified with Pt nanoparticles (Pt1%@PC500) and then immobilized on glass surfaces using polyhydroxyalkanoate biopolymer poly(hydroxybutyrate-<i>co</i>-hydroxyhexanoate) (PHBH). The as-prepared immobilized Pt-modified TiO<sub>2</sub> photocatalysts were fully characterized using various physicochemical techniques. The photocatalytic activity of the photocatalyst film was investigated for photocatalytic hydrogen production through water reduction using ethanol as a sacrificial donor. The impact of the film preparation conditions, e.g., PHBH concentration, PHBH:catalyst ratio, and temperature, on activity and stability was studied in detail. The application of biopolymer PHBH as a binder provides a green alternative to conventional immobilization methods, and with the application of PHBH, a stable and active photocatalyst film that showed lower activity compared to that of the suspended photocatalyst but good recyclability in six runs was prepared. A long-term photocatalytic hydrogen production experiment was carried out. In 98 h of operation, 12 mmol of hydrogen was produced in three consecutive runs with a PHBH/Pt1%@PC500 film having an area of ∼5.3 cm<sup>2</sup>. A significantly lower hydrogen productivity was observed after the first run, possibly due to a change in film structure, but thereafter, the productivity remained almost constant for the second and third runs. Hydrogen was the main product in the gas phase (90%), but carbon dioxide (4–5%) and methane (4–5%) were obtained as important byproducts. The byproducts are a consequence of the use of the sacrificial reagent ethanol. The results of the film performance are very promising, with regard to large-scale continuous hydrogen production.\",\"PeriodicalId\":50,\"journal\":{\"name\":\"Langmuir\",\"volume\":\"19 1\",\"pages\":\"\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Langmuir\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.langmuir.4c02727\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Langmuir","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.langmuir.4c02727","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Polyhydroxykanoate-Assisted Photocatalytic TiO2 Films for Hydrogen Production
The photocatalytic production of hydrogen using biopolymer-immobilized titanium dioxide (TiO2) is an innovative and sustainable approach to renewable energy generation. TiO2, a well-known photocatalyst, benefits from immobilization on biopolymers due to its environmental friendliness, abundance, and biodegradability. In another way, to boost the efficiency of TiO2, its surface properties can be modified by incorporating co-catalysts like platinum (Pt) to improve charge separation. In this work, the surface of commercial TiO2 PC500 was modified with Pt nanoparticles (Pt1%@PC500) and then immobilized on glass surfaces using polyhydroxyalkanoate biopolymer poly(hydroxybutyrate-co-hydroxyhexanoate) (PHBH). The as-prepared immobilized Pt-modified TiO2 photocatalysts were fully characterized using various physicochemical techniques. The photocatalytic activity of the photocatalyst film was investigated for photocatalytic hydrogen production through water reduction using ethanol as a sacrificial donor. The impact of the film preparation conditions, e.g., PHBH concentration, PHBH:catalyst ratio, and temperature, on activity and stability was studied in detail. The application of biopolymer PHBH as a binder provides a green alternative to conventional immobilization methods, and with the application of PHBH, a stable and active photocatalyst film that showed lower activity compared to that of the suspended photocatalyst but good recyclability in six runs was prepared. A long-term photocatalytic hydrogen production experiment was carried out. In 98 h of operation, 12 mmol of hydrogen was produced in three consecutive runs with a PHBH/Pt1%@PC500 film having an area of ∼5.3 cm2. A significantly lower hydrogen productivity was observed after the first run, possibly due to a change in film structure, but thereafter, the productivity remained almost constant for the second and third runs. Hydrogen was the main product in the gas phase (90%), but carbon dioxide (4–5%) and methane (4–5%) were obtained as important byproducts. The byproducts are a consequence of the use of the sacrificial reagent ethanol. The results of the film performance are very promising, with regard to large-scale continuous hydrogen production.
期刊介绍:
Langmuir is an interdisciplinary journal publishing articles in the following subject categories:
Colloids: surfactants and self-assembly, dispersions, emulsions, foams
Interfaces: adsorption, reactions, films, forces
Biological Interfaces: biocolloids, biomolecular and biomimetic materials
Materials: nano- and mesostructured materials, polymers, gels, liquid crystals
Electrochemistry: interfacial charge transfer, charge transport, electrocatalysis, electrokinetic phenomena, bioelectrochemistry
Devices and Applications: sensors, fluidics, patterning, catalysis, photonic crystals
However, when high-impact, original work is submitted that does not fit within the above categories, decisions to accept or decline such papers will be based on one criteria: What Would Irving Do?
Langmuir ranks #2 in citations out of 136 journals in the category of Physical Chemistry with 113,157 total citations. The journal received an Impact Factor of 4.384*.
This journal is also indexed in the categories of Materials Science (ranked #1) and Multidisciplinary Chemistry (ranked #5).