{"title":"能否通过对撞机的散射截面检验贝尔不等式?","authors":"Song Li, Wei Shen, Jin Min Yang","doi":"10.1140/epjc/s10052-024-13584-x","DOIUrl":null,"url":null,"abstract":"<div><p>In current studies for testing Bell inequalities at colliders, the reconstruction of spin correlations from scattering cross-sections relies on the bilinear form of the spin correlations, but not all local hidden variable models (LHVMs) have such a property. To demonstrate that a general LHVM cannot be rule out via scattering cross-section data, we propose a specific LHVM, which can exactly duplicate the same scattering cross-section for particle production and decay as the standard quantum theory, making it indistinguishable at colliders in principle. Despite of this, we find that reconstructing spin correlations through scattering cross-sections can still exclude a broad class of LHVMs, e.g., those models employing classical spin correlations as a surrogate for quantum spin correlations.</p></div>","PeriodicalId":788,"journal":{"name":"The European Physical Journal C","volume":"84 11","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1140/epjc/s10052-024-13584-x.pdf","citationCount":"0","resultStr":"{\"title\":\"Can Bell inequalities be tested via scattering cross-section at colliders ?\",\"authors\":\"Song Li, Wei Shen, Jin Min Yang\",\"doi\":\"10.1140/epjc/s10052-024-13584-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In current studies for testing Bell inequalities at colliders, the reconstruction of spin correlations from scattering cross-sections relies on the bilinear form of the spin correlations, but not all local hidden variable models (LHVMs) have such a property. To demonstrate that a general LHVM cannot be rule out via scattering cross-section data, we propose a specific LHVM, which can exactly duplicate the same scattering cross-section for particle production and decay as the standard quantum theory, making it indistinguishable at colliders in principle. Despite of this, we find that reconstructing spin correlations through scattering cross-sections can still exclude a broad class of LHVMs, e.g., those models employing classical spin correlations as a surrogate for quantum spin correlations.</p></div>\",\"PeriodicalId\":788,\"journal\":{\"name\":\"The European Physical Journal C\",\"volume\":\"84 11\",\"pages\":\"\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2024-11-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1140/epjc/s10052-024-13584-x.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The European Physical Journal C\",\"FirstCategoryId\":\"4\",\"ListUrlMain\":\"https://link.springer.com/article/10.1140/epjc/s10052-024-13584-x\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, PARTICLES & FIELDS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The European Physical Journal C","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1140/epjc/s10052-024-13584-x","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, PARTICLES & FIELDS","Score":null,"Total":0}
Can Bell inequalities be tested via scattering cross-section at colliders ?
In current studies for testing Bell inequalities at colliders, the reconstruction of spin correlations from scattering cross-sections relies on the bilinear form of the spin correlations, but not all local hidden variable models (LHVMs) have such a property. To demonstrate that a general LHVM cannot be rule out via scattering cross-section data, we propose a specific LHVM, which can exactly duplicate the same scattering cross-section for particle production and decay as the standard quantum theory, making it indistinguishable at colliders in principle. Despite of this, we find that reconstructing spin correlations through scattering cross-sections can still exclude a broad class of LHVMs, e.g., those models employing classical spin correlations as a surrogate for quantum spin correlations.
期刊介绍:
Experimental Physics I: Accelerator Based High-Energy Physics
Hadron and lepton collider physics
Lepton-nucleon scattering
High-energy nuclear reactions
Standard model precision tests
Search for new physics beyond the standard model
Heavy flavour physics
Neutrino properties
Particle detector developments
Computational methods and analysis tools
Experimental Physics II: Astroparticle Physics
Dark matter searches
High-energy cosmic rays
Double beta decay
Long baseline neutrino experiments
Neutrino astronomy
Axions and other weakly interacting light particles
Gravitational waves and observational cosmology
Particle detector developments
Computational methods and analysis tools
Theoretical Physics I: Phenomenology of the Standard Model and Beyond
Electroweak interactions
Quantum chromo dynamics
Heavy quark physics and quark flavour mixing
Neutrino physics
Phenomenology of astro- and cosmoparticle physics
Meson spectroscopy and non-perturbative QCD
Low-energy effective field theories
Lattice field theory
High temperature QCD and heavy ion physics
Phenomenology of supersymmetric extensions of the SM
Phenomenology of non-supersymmetric extensions of the SM
Model building and alternative models of electroweak symmetry breaking
Flavour physics beyond the SM
Computational algorithms and tools...etc.