{"title":"H2O 中叠氮标记碳水化合物的二维红外光谱。","authors":"P Gasse, T Stensitzki, H M Müller-Werkmeister","doi":"10.1063/5.0225308","DOIUrl":null,"url":null,"abstract":"<p><p>Carbohydrates constitute one of the key classes of biomacromolecules, yet vibrational spectroscopic studies involving carbohydrates remain scarce as spectra are highly congested and lack significant marker vibrations. Recently, we introduced and characterized a thiocyanate-labeled glucose [Gasse et al., J. Chem. Phys. 158, 145101 (2023)] demonstrating 2D-IR spectroscopy of carbohydrates using vibrational probes. Here, we build on that work and test azide groups as alternative for studies of carbohydrates to expand the available set of local probes. Many common carbohydrates with different azide labeling positions, such as galactose, glucose, or lactose, are readily available due to their application in click chemistry and hence do not require additional complex synthesis strategies. In this work, we have characterized azide-labeled glucose,, galactose, acetylglucosamine and lactose in water using IR and 2D-IR spectroscopy to test their potential for future applications in studies of carbohydrate-protein interactions. Our findings indicate that their absorption profiles and vibrational dynamics are primarily determined by the labeling position on the ring. However, we also observe additional variations between samples with the same labeling position. Furthermore, we demonstrate that their usage remains feasible at biologically relevant concentrations, highlighting their potential to probe more complex biological processes, i.e., enzymatic catalysis.</p>","PeriodicalId":15313,"journal":{"name":"Journal of Chemical Physics","volume":"161 19","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"2D-IR spectroscopy of azide-labeled carbohydrates in H2O.\",\"authors\":\"P Gasse, T Stensitzki, H M Müller-Werkmeister\",\"doi\":\"10.1063/5.0225308\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Carbohydrates constitute one of the key classes of biomacromolecules, yet vibrational spectroscopic studies involving carbohydrates remain scarce as spectra are highly congested and lack significant marker vibrations. Recently, we introduced and characterized a thiocyanate-labeled glucose [Gasse et al., J. Chem. Phys. 158, 145101 (2023)] demonstrating 2D-IR spectroscopy of carbohydrates using vibrational probes. Here, we build on that work and test azide groups as alternative for studies of carbohydrates to expand the available set of local probes. Many common carbohydrates with different azide labeling positions, such as galactose, glucose, or lactose, are readily available due to their application in click chemistry and hence do not require additional complex synthesis strategies. In this work, we have characterized azide-labeled glucose,, galactose, acetylglucosamine and lactose in water using IR and 2D-IR spectroscopy to test their potential for future applications in studies of carbohydrate-protein interactions. Our findings indicate that their absorption profiles and vibrational dynamics are primarily determined by the labeling position on the ring. However, we also observe additional variations between samples with the same labeling position. Furthermore, we demonstrate that their usage remains feasible at biologically relevant concentrations, highlighting their potential to probe more complex biological processes, i.e., enzymatic catalysis.</p>\",\"PeriodicalId\":15313,\"journal\":{\"name\":\"Journal of Chemical Physics\",\"volume\":\"161 19\",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-11-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Chemical Physics\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0225308\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Physics","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1063/5.0225308","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
2D-IR spectroscopy of azide-labeled carbohydrates in H2O.
Carbohydrates constitute one of the key classes of biomacromolecules, yet vibrational spectroscopic studies involving carbohydrates remain scarce as spectra are highly congested and lack significant marker vibrations. Recently, we introduced and characterized a thiocyanate-labeled glucose [Gasse et al., J. Chem. Phys. 158, 145101 (2023)] demonstrating 2D-IR spectroscopy of carbohydrates using vibrational probes. Here, we build on that work and test azide groups as alternative for studies of carbohydrates to expand the available set of local probes. Many common carbohydrates with different azide labeling positions, such as galactose, glucose, or lactose, are readily available due to their application in click chemistry and hence do not require additional complex synthesis strategies. In this work, we have characterized azide-labeled glucose,, galactose, acetylglucosamine and lactose in water using IR and 2D-IR spectroscopy to test their potential for future applications in studies of carbohydrate-protein interactions. Our findings indicate that their absorption profiles and vibrational dynamics are primarily determined by the labeling position on the ring. However, we also observe additional variations between samples with the same labeling position. Furthermore, we demonstrate that their usage remains feasible at biologically relevant concentrations, highlighting their potential to probe more complex biological processes, i.e., enzymatic catalysis.
期刊介绍:
The Journal of Chemical Physics publishes quantitative and rigorous science of long-lasting value in methods and applications of chemical physics. The Journal also publishes brief Communications of significant new findings, Perspectives on the latest advances in the field, and Special Topic issues. The Journal focuses on innovative research in experimental and theoretical areas of chemical physics, including spectroscopy, dynamics, kinetics, statistical mechanics, and quantum mechanics. In addition, topical areas such as polymers, soft matter, materials, surfaces/interfaces, and systems of biological relevance are of increasing importance.
Topical coverage includes:
Theoretical Methods and Algorithms
Advanced Experimental Techniques
Atoms, Molecules, and Clusters
Liquids, Glasses, and Crystals
Surfaces, Interfaces, and Materials
Polymers and Soft Matter
Biological Molecules and Networks.