Thomas Serrano, Nicoletta Casartelli, Foad Ghasemi, Hugo Wioland, Frédérique Cuvelier, Audrey Salles, Maryse Moya-Nilges, Lisa Welker, Serena Bernacchi, Marc Ruff, Antoine Jégou, Guillaume Romet-Lemonne, Olivier Schwartz, Stéphane Frémont, Arnaud Echard
{"title":"HIV-1 的萌发需要氧化还原酶 MICAL1 分解皮层肌动蛋白。","authors":"Thomas Serrano, Nicoletta Casartelli, Foad Ghasemi, Hugo Wioland, Frédérique Cuvelier, Audrey Salles, Maryse Moya-Nilges, Lisa Welker, Serena Bernacchi, Marc Ruff, Antoine Jégou, Guillaume Romet-Lemonne, Olivier Schwartz, Stéphane Frémont, Arnaud Echard","doi":"10.1073/pnas.2407835121","DOIUrl":null,"url":null,"abstract":"<p><p>Many enveloped viruses bud from the plasma membrane that is tightly associated with a dense and thick actin cortex. This actin network represents a significant challenge for membrane deformation and scission, and how it is remodeled during the late steps of the viral cycle is largely unknown. Using superresolution microscopy, we show that HIV-1 buds in areas of the plasma membrane with low cortical F-actin levels. We find that the cellular oxidoreductase MICAL1 locally depolymerizes actin at budding sites to promote HIV-1 budding and release. Upon MICAL1 depletion, F-actin abnormally remains at viral budding sites, incompletely budded viruses accumulate at the plasma membrane and viral release is impaired. Remarkably, normal viral release can be restored in MICAL1-depleted cells by inhibiting Arp2/3-dependent branched actin networks. Mechanistically, we find that MICAL1 directly disassembles branched-actin networks and controls the timely recruitment of the Endosomal Sorting Complexes Required for Transport scission machinery during viral budding. In addition, the MICAL1 activator Rab35 is recruited at budding sites, functions in the same pathway as MICAL1, and is also required for viral release. This work reveals a role for oxidoreduction in triggering local actin depolymerization to control HIV-1 budding, a mechanism that may be widely used by other viruses. The debranching activity of MICAL1 could be involved beyond viral budding in various other cellular functions requiring local plasma membrane deformation.</p>","PeriodicalId":20548,"journal":{"name":"Proceedings of the National Academy of Sciences of the United States of America","volume":"121 48","pages":"e2407835121"},"PeriodicalIF":9.4000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"HIV-1 budding requires cortical actin disassembly by the oxidoreductase MICAL1.\",\"authors\":\"Thomas Serrano, Nicoletta Casartelli, Foad Ghasemi, Hugo Wioland, Frédérique Cuvelier, Audrey Salles, Maryse Moya-Nilges, Lisa Welker, Serena Bernacchi, Marc Ruff, Antoine Jégou, Guillaume Romet-Lemonne, Olivier Schwartz, Stéphane Frémont, Arnaud Echard\",\"doi\":\"10.1073/pnas.2407835121\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Many enveloped viruses bud from the plasma membrane that is tightly associated with a dense and thick actin cortex. This actin network represents a significant challenge for membrane deformation and scission, and how it is remodeled during the late steps of the viral cycle is largely unknown. Using superresolution microscopy, we show that HIV-1 buds in areas of the plasma membrane with low cortical F-actin levels. We find that the cellular oxidoreductase MICAL1 locally depolymerizes actin at budding sites to promote HIV-1 budding and release. Upon MICAL1 depletion, F-actin abnormally remains at viral budding sites, incompletely budded viruses accumulate at the plasma membrane and viral release is impaired. Remarkably, normal viral release can be restored in MICAL1-depleted cells by inhibiting Arp2/3-dependent branched actin networks. Mechanistically, we find that MICAL1 directly disassembles branched-actin networks and controls the timely recruitment of the Endosomal Sorting Complexes Required for Transport scission machinery during viral budding. In addition, the MICAL1 activator Rab35 is recruited at budding sites, functions in the same pathway as MICAL1, and is also required for viral release. This work reveals a role for oxidoreduction in triggering local actin depolymerization to control HIV-1 budding, a mechanism that may be widely used by other viruses. The debranching activity of MICAL1 could be involved beyond viral budding in various other cellular functions requiring local plasma membrane deformation.</p>\",\"PeriodicalId\":20548,\"journal\":{\"name\":\"Proceedings of the National Academy of Sciences of the United States of America\",\"volume\":\"121 48\",\"pages\":\"e2407835121\"},\"PeriodicalIF\":9.4000,\"publicationDate\":\"2024-11-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the National Academy of Sciences of the United States of America\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1073/pnas.2407835121\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/11/18 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the National Academy of Sciences of the United States of America","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1073/pnas.2407835121","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/18 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
HIV-1 budding requires cortical actin disassembly by the oxidoreductase MICAL1.
Many enveloped viruses bud from the plasma membrane that is tightly associated with a dense and thick actin cortex. This actin network represents a significant challenge for membrane deformation and scission, and how it is remodeled during the late steps of the viral cycle is largely unknown. Using superresolution microscopy, we show that HIV-1 buds in areas of the plasma membrane with low cortical F-actin levels. We find that the cellular oxidoreductase MICAL1 locally depolymerizes actin at budding sites to promote HIV-1 budding and release. Upon MICAL1 depletion, F-actin abnormally remains at viral budding sites, incompletely budded viruses accumulate at the plasma membrane and viral release is impaired. Remarkably, normal viral release can be restored in MICAL1-depleted cells by inhibiting Arp2/3-dependent branched actin networks. Mechanistically, we find that MICAL1 directly disassembles branched-actin networks and controls the timely recruitment of the Endosomal Sorting Complexes Required for Transport scission machinery during viral budding. In addition, the MICAL1 activator Rab35 is recruited at budding sites, functions in the same pathway as MICAL1, and is also required for viral release. This work reveals a role for oxidoreduction in triggering local actin depolymerization to control HIV-1 budding, a mechanism that may be widely used by other viruses. The debranching activity of MICAL1 could be involved beyond viral budding in various other cellular functions requiring local plasma membrane deformation.
期刊介绍:
The Proceedings of the National Academy of Sciences (PNAS), a peer-reviewed journal of the National Academy of Sciences (NAS), serves as an authoritative source for high-impact, original research across the biological, physical, and social sciences. With a global scope, the journal welcomes submissions from researchers worldwide, making it an inclusive platform for advancing scientific knowledge.