Huimin Li, James P Donley, David T Wu, John G Curro, Caleb A Tormey
{"title":"聚乙烯液体的双分子理论。","authors":"Huimin Li, James P Donley, David T Wu, John G Curro, Caleb A Tormey","doi":"10.1063/5.0242204","DOIUrl":null,"url":null,"abstract":"<p><p>Two-molecule theory refers to a class of microscopic, self-consistent field theories for the radial distribution function in classical molecular liquids. The version examined here can be considered as one of the very few formally derived closures to the reference interaction site model (RISM) equation. The theory is applied to polyethylene liquids, computing their equilibrium structural and thermodynamic properties at melt densities. The equation for the radial distribution function, which is represented as an average over the accessible states of two molecules in an external field that mimics the effects of the other molecules in the liquid, is computed by Monte Carlo simulation along with the intramolecular structure function. An improved direct sampling algorithm is utilized to speed the equilibration. Polyethylene chains of 24 and 66 united atom CH2 units are studied. The results are compared to full, many-chain molecular dynamics (MD) simulations and self-consistent polymer-RISM (PRISM) theory with the atomic Percus-Yevick (PY) closure under the same conditions. It is shown that the two-molecule theory produces results that are close to those of MD and is thus able to overcome defects of PRISM-PY theory and predict more accurate liquid structure at both short and long ranges. Predictions for the equation of state are also discussed.</p>","PeriodicalId":15313,"journal":{"name":"Journal of Chemical Physics","volume":"161 19","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Two-molecule theory of polyethylene liquids.\",\"authors\":\"Huimin Li, James P Donley, David T Wu, John G Curro, Caleb A Tormey\",\"doi\":\"10.1063/5.0242204\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Two-molecule theory refers to a class of microscopic, self-consistent field theories for the radial distribution function in classical molecular liquids. The version examined here can be considered as one of the very few formally derived closures to the reference interaction site model (RISM) equation. The theory is applied to polyethylene liquids, computing their equilibrium structural and thermodynamic properties at melt densities. The equation for the radial distribution function, which is represented as an average over the accessible states of two molecules in an external field that mimics the effects of the other molecules in the liquid, is computed by Monte Carlo simulation along with the intramolecular structure function. An improved direct sampling algorithm is utilized to speed the equilibration. Polyethylene chains of 24 and 66 united atom CH2 units are studied. The results are compared to full, many-chain molecular dynamics (MD) simulations and self-consistent polymer-RISM (PRISM) theory with the atomic Percus-Yevick (PY) closure under the same conditions. It is shown that the two-molecule theory produces results that are close to those of MD and is thus able to overcome defects of PRISM-PY theory and predict more accurate liquid structure at both short and long ranges. Predictions for the equation of state are also discussed.</p>\",\"PeriodicalId\":15313,\"journal\":{\"name\":\"Journal of Chemical Physics\",\"volume\":\"161 19\",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-11-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Chemical Physics\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0242204\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Physics","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1063/5.0242204","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Two-molecule theory refers to a class of microscopic, self-consistent field theories for the radial distribution function in classical molecular liquids. The version examined here can be considered as one of the very few formally derived closures to the reference interaction site model (RISM) equation. The theory is applied to polyethylene liquids, computing their equilibrium structural and thermodynamic properties at melt densities. The equation for the radial distribution function, which is represented as an average over the accessible states of two molecules in an external field that mimics the effects of the other molecules in the liquid, is computed by Monte Carlo simulation along with the intramolecular structure function. An improved direct sampling algorithm is utilized to speed the equilibration. Polyethylene chains of 24 and 66 united atom CH2 units are studied. The results are compared to full, many-chain molecular dynamics (MD) simulations and self-consistent polymer-RISM (PRISM) theory with the atomic Percus-Yevick (PY) closure under the same conditions. It is shown that the two-molecule theory produces results that are close to those of MD and is thus able to overcome defects of PRISM-PY theory and predict more accurate liquid structure at both short and long ranges. Predictions for the equation of state are also discussed.
期刊介绍:
The Journal of Chemical Physics publishes quantitative and rigorous science of long-lasting value in methods and applications of chemical physics. The Journal also publishes brief Communications of significant new findings, Perspectives on the latest advances in the field, and Special Topic issues. The Journal focuses on innovative research in experimental and theoretical areas of chemical physics, including spectroscopy, dynamics, kinetics, statistical mechanics, and quantum mechanics. In addition, topical areas such as polymers, soft matter, materials, surfaces/interfaces, and systems of biological relevance are of increasing importance.
Topical coverage includes:
Theoretical Methods and Algorithms
Advanced Experimental Techniques
Atoms, Molecules, and Clusters
Liquids, Glasses, and Crystals
Surfaces, Interfaces, and Materials
Polymers and Soft Matter
Biological Molecules and Networks.