Zexu Fan , Yong Yuan , Roberto Cudmani , Jinghua Zhang , Mingqing Sun , Stylianos Chrisopoulos
{"title":"可液化土壤中表面粗糙度不同的隧道地震行为实验研究","authors":"Zexu Fan , Yong Yuan , Roberto Cudmani , Jinghua Zhang , Mingqing Sun , Stylianos Chrisopoulos","doi":"10.1016/j.soildyn.2024.109067","DOIUrl":null,"url":null,"abstract":"<div><div>Earthquake-induced liquefaction poses grave safety risks to the underground structures. In this study, 1-g shaking table tests were conducted to investigate the uplift behaviors and soil-structure interaction (SSI) of a two-part tunnel located in liquefiable soils, with special attention paid to the influence of structural surface roughness. Two parallel tests, including a free-field test and a soil-tunnel test, were carried out to investigate the field responses and the effect of SSI during liquefaction induced by various input motions. The test results indicate that the ground partially liquefied during the first shaking event, and then experienced full liquefaction in the subsequent events with higher loading amplitude and longer loading duration. The excess pore pressure and horizontal acceleration responses around the tunnel were significantly altered due to the presence of the tunnel, which also led to different patterns of acceleration amplification and strain development in its vicinity. While structural surface roughness influenced the aforementioned responses to some extent, it played a more dominant role in the uplift behavior of the tunnel. The segment with lower surface roughness experienced significantly greater uplift compared to the rougher counterpart. Furthermore, it was found that the structural uplift behavior can be divided into distinct stages that feature different patterns of pore pressure development, and such behavior was notably different under varied loading conditions. The findings in this research emphasize the importance of incorporating the considerations of surface roughness in future numerical or experimental studies so that the structural uplift can be better captured.</div></div>","PeriodicalId":49502,"journal":{"name":"Soil Dynamics and Earthquake Engineering","volume":"188 ","pages":"Article 109067"},"PeriodicalIF":4.2000,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experimental study on the seismic behavior of tunnels with distinct surface roughness in liquefiable soils\",\"authors\":\"Zexu Fan , Yong Yuan , Roberto Cudmani , Jinghua Zhang , Mingqing Sun , Stylianos Chrisopoulos\",\"doi\":\"10.1016/j.soildyn.2024.109067\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Earthquake-induced liquefaction poses grave safety risks to the underground structures. In this study, 1-g shaking table tests were conducted to investigate the uplift behaviors and soil-structure interaction (SSI) of a two-part tunnel located in liquefiable soils, with special attention paid to the influence of structural surface roughness. Two parallel tests, including a free-field test and a soil-tunnel test, were carried out to investigate the field responses and the effect of SSI during liquefaction induced by various input motions. The test results indicate that the ground partially liquefied during the first shaking event, and then experienced full liquefaction in the subsequent events with higher loading amplitude and longer loading duration. The excess pore pressure and horizontal acceleration responses around the tunnel were significantly altered due to the presence of the tunnel, which also led to different patterns of acceleration amplification and strain development in its vicinity. While structural surface roughness influenced the aforementioned responses to some extent, it played a more dominant role in the uplift behavior of the tunnel. The segment with lower surface roughness experienced significantly greater uplift compared to the rougher counterpart. Furthermore, it was found that the structural uplift behavior can be divided into distinct stages that feature different patterns of pore pressure development, and such behavior was notably different under varied loading conditions. The findings in this research emphasize the importance of incorporating the considerations of surface roughness in future numerical or experimental studies so that the structural uplift can be better captured.</div></div>\",\"PeriodicalId\":49502,\"journal\":{\"name\":\"Soil Dynamics and Earthquake Engineering\",\"volume\":\"188 \",\"pages\":\"Article 109067\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2024-11-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Soil Dynamics and Earthquake Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0267726124006195\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, GEOLOGICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soil Dynamics and Earthquake Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0267726124006195","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
Experimental study on the seismic behavior of tunnels with distinct surface roughness in liquefiable soils
Earthquake-induced liquefaction poses grave safety risks to the underground structures. In this study, 1-g shaking table tests were conducted to investigate the uplift behaviors and soil-structure interaction (SSI) of a two-part tunnel located in liquefiable soils, with special attention paid to the influence of structural surface roughness. Two parallel tests, including a free-field test and a soil-tunnel test, were carried out to investigate the field responses and the effect of SSI during liquefaction induced by various input motions. The test results indicate that the ground partially liquefied during the first shaking event, and then experienced full liquefaction in the subsequent events with higher loading amplitude and longer loading duration. The excess pore pressure and horizontal acceleration responses around the tunnel were significantly altered due to the presence of the tunnel, which also led to different patterns of acceleration amplification and strain development in its vicinity. While structural surface roughness influenced the aforementioned responses to some extent, it played a more dominant role in the uplift behavior of the tunnel. The segment with lower surface roughness experienced significantly greater uplift compared to the rougher counterpart. Furthermore, it was found that the structural uplift behavior can be divided into distinct stages that feature different patterns of pore pressure development, and such behavior was notably different under varied loading conditions. The findings in this research emphasize the importance of incorporating the considerations of surface roughness in future numerical or experimental studies so that the structural uplift can be better captured.
期刊介绍:
The journal aims to encourage and enhance the role of mechanics and other disciplines as they relate to earthquake engineering by providing opportunities for the publication of the work of applied mathematicians, engineers and other applied scientists involved in solving problems closely related to the field of earthquake engineering and geotechnical earthquake engineering.
Emphasis is placed on new concepts and techniques, but case histories will also be published if they enhance the presentation and understanding of new technical concepts.