在宽温度范围内利用钒替代铁、镍双掺杂氟磷酸盐阴极提高钠离子电池性能

IF 8.1 2区 工程技术 Q1 CHEMISTRY, PHYSICAL
Sanchayan Mahato, Koushik Biswas
{"title":"在宽温度范围内利用钒替代铁、镍双掺杂氟磷酸盐阴极提高钠离子电池性能","authors":"Sanchayan Mahato,&nbsp;Koushik Biswas","doi":"10.1016/j.jpowsour.2024.235734","DOIUrl":null,"url":null,"abstract":"<div><div>Recently, polyanionic material has been identified as the most attractive choice for the cathode in sodium-ion batteries. However, the poor electronic conductivity of Na<sub>3</sub>V<sub>2</sub>(PO<sub>4</sub>)<sub>2</sub>F<sub>3</sub> (NVPF) limits its electrochemical performance, while the presence of vanadium increases material costs. To address these challenges, we have synthesized carbon-coated Fe, Ni dual-doped NVPF (Na<sub>3</sub>V<sub>1.9</sub>Fe<sub>0.01</sub>Ni<sub>0.09</sub>(PO<sub>4</sub>)<sub>2</sub>F<sub>3</sub>) via a rota tumbler assisted sol-gel process and reported for the first time. Comprehensive studies reveal that dual doping significantly affects the structural, morphological, and electrochemical properties of the material. Rietveld refinement shows that doping adjusts the crystal structure, enlarging Na⁺ diffusion pathways and enhancing diffusion kinetics. Na<sub>3</sub>V<sub>1.9</sub>Fe<sub>0.01</sub>Ni<sub>0.09</sub>(PO<sub>4</sub>)<sub>2</sub>F<sub>3</sub> exhibits a superior capacity of 115.58 mAhg<sup>−1</sup> at 0.1C, 92.86 mAhg<sup>−1</sup> at 2C, 87.79 % cyclic retention at 2C after 500 cycles. The optimized material demonstrates robust performance across a wide temperature range (55 °C to −21.1 °C). Furthermore, full-cell constructed using Na<sub>3</sub>V<sub>1.9</sub>Fe<sub>0.01</sub>Ni<sub>0.09</sub>(PO<sub>4</sub>)<sub>2</sub>F<sub>3</sub> as cathode and hard carbon as anode delivers an impressive capacity of 87.01 mAhg<sup>−1</sup> at 1C and a retention of 94.50 % for 100 cycles at 0.5C. Moreover, reducing the vanadium content in the cathode helps lower the overall manufacturing costs. Our research demonstrates that Na<sub>3</sub>V<sub>1.9</sub>Fe<sub>0.01</sub>Ni<sub>0.09</sub>(PO<sub>4</sub>)<sub>2</sub>F<sub>3</sub> is a promising option for a high-performance cathode in sodium-ion batteries.</div></div>","PeriodicalId":377,"journal":{"name":"Journal of Power Sources","volume":"626 ","pages":"Article 235734"},"PeriodicalIF":8.1000,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Boosting sodium-ion battery performance with vanadium substituted Fe, Ni dual doped fluorophosphate cathode over a wide temperature range\",\"authors\":\"Sanchayan Mahato,&nbsp;Koushik Biswas\",\"doi\":\"10.1016/j.jpowsour.2024.235734\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Recently, polyanionic material has been identified as the most attractive choice for the cathode in sodium-ion batteries. However, the poor electronic conductivity of Na<sub>3</sub>V<sub>2</sub>(PO<sub>4</sub>)<sub>2</sub>F<sub>3</sub> (NVPF) limits its electrochemical performance, while the presence of vanadium increases material costs. To address these challenges, we have synthesized carbon-coated Fe, Ni dual-doped NVPF (Na<sub>3</sub>V<sub>1.9</sub>Fe<sub>0.01</sub>Ni<sub>0.09</sub>(PO<sub>4</sub>)<sub>2</sub>F<sub>3</sub>) via a rota tumbler assisted sol-gel process and reported for the first time. Comprehensive studies reveal that dual doping significantly affects the structural, morphological, and electrochemical properties of the material. Rietveld refinement shows that doping adjusts the crystal structure, enlarging Na⁺ diffusion pathways and enhancing diffusion kinetics. Na<sub>3</sub>V<sub>1.9</sub>Fe<sub>0.01</sub>Ni<sub>0.09</sub>(PO<sub>4</sub>)<sub>2</sub>F<sub>3</sub> exhibits a superior capacity of 115.58 mAhg<sup>−1</sup> at 0.1C, 92.86 mAhg<sup>−1</sup> at 2C, 87.79 % cyclic retention at 2C after 500 cycles. The optimized material demonstrates robust performance across a wide temperature range (55 °C to −21.1 °C). Furthermore, full-cell constructed using Na<sub>3</sub>V<sub>1.9</sub>Fe<sub>0.01</sub>Ni<sub>0.09</sub>(PO<sub>4</sub>)<sub>2</sub>F<sub>3</sub> as cathode and hard carbon as anode delivers an impressive capacity of 87.01 mAhg<sup>−1</sup> at 1C and a retention of 94.50 % for 100 cycles at 0.5C. Moreover, reducing the vanadium content in the cathode helps lower the overall manufacturing costs. Our research demonstrates that Na<sub>3</sub>V<sub>1.9</sub>Fe<sub>0.01</sub>Ni<sub>0.09</sub>(PO<sub>4</sub>)<sub>2</sub>F<sub>3</sub> is a promising option for a high-performance cathode in sodium-ion batteries.</div></div>\",\"PeriodicalId\":377,\"journal\":{\"name\":\"Journal of Power Sources\",\"volume\":\"626 \",\"pages\":\"Article 235734\"},\"PeriodicalIF\":8.1000,\"publicationDate\":\"2024-11-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Power Sources\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0378775324016860\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Power Sources","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378775324016860","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

最近,聚阴离子材料被认为是钠离子电池阴极最有吸引力的选择。然而,Na3V2(PO4)2F3(NVPF)较差的电子导电性限制了其电化学性能,而钒的存在又增加了材料成本。为了应对这些挑战,我们通过滚筒式滚揉辅助溶胶-凝胶工艺合成了碳包覆的铁、镍双掺杂 NVPF(Na3V1.9Fe0.01Ni0.09(PO4)2F3),并首次进行了报道。综合研究表明,双掺杂显著影响了材料的结构、形态和电化学特性。里特维尔德精炼表明,掺杂调整了晶体结构,扩大了 Na⁺ 的扩散途径,增强了扩散动力学。Na3V1.9Fe0.01Ni0.09(PO4)2F3 在 0.1C 时的容量为 115.58 mAhg-1,2C 时为 92.86 mAhg-1,2C 循环 500 次后的循环保持率为 87.79%。优化后的材料在很宽的温度范围(55 °C至-21.1 °C)内都能表现出稳定的性能。此外,以 Na3V1.9Fe0.01Ni0.09(PO4)2F3 为阴极、硬碳为阳极构建的全电池在 1C 时的容量为 87.01 mAhg-1,在 0.5C 时循环 100 次的保持率为 94.50%。此外,减少阴极中的钒含量有助于降低总体制造成本。我们的研究表明,Na3V1.9Fe0.01Ni0.09(PO4)2F3 是钠离子电池高性能阴极的理想选择。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Boosting sodium-ion battery performance with vanadium substituted Fe, Ni dual doped fluorophosphate cathode over a wide temperature range

Boosting sodium-ion battery performance with vanadium substituted Fe, Ni dual doped fluorophosphate cathode over a wide temperature range
Recently, polyanionic material has been identified as the most attractive choice for the cathode in sodium-ion batteries. However, the poor electronic conductivity of Na3V2(PO4)2F3 (NVPF) limits its electrochemical performance, while the presence of vanadium increases material costs. To address these challenges, we have synthesized carbon-coated Fe, Ni dual-doped NVPF (Na3V1.9Fe0.01Ni0.09(PO4)2F3) via a rota tumbler assisted sol-gel process and reported for the first time. Comprehensive studies reveal that dual doping significantly affects the structural, morphological, and electrochemical properties of the material. Rietveld refinement shows that doping adjusts the crystal structure, enlarging Na⁺ diffusion pathways and enhancing diffusion kinetics. Na3V1.9Fe0.01Ni0.09(PO4)2F3 exhibits a superior capacity of 115.58 mAhg−1 at 0.1C, 92.86 mAhg−1 at 2C, 87.79 % cyclic retention at 2C after 500 cycles. The optimized material demonstrates robust performance across a wide temperature range (55 °C to −21.1 °C). Furthermore, full-cell constructed using Na3V1.9Fe0.01Ni0.09(PO4)2F3 as cathode and hard carbon as anode delivers an impressive capacity of 87.01 mAhg−1 at 1C and a retention of 94.50 % for 100 cycles at 0.5C. Moreover, reducing the vanadium content in the cathode helps lower the overall manufacturing costs. Our research demonstrates that Na3V1.9Fe0.01Ni0.09(PO4)2F3 is a promising option for a high-performance cathode in sodium-ion batteries.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Power Sources
Journal of Power Sources 工程技术-电化学
CiteScore
16.40
自引率
6.50%
发文量
1249
审稿时长
36 days
期刊介绍: The Journal of Power Sources is a publication catering to researchers and technologists interested in various aspects of the science, technology, and applications of electrochemical power sources. It covers original research and reviews on primary and secondary batteries, fuel cells, supercapacitors, and photo-electrochemical cells. Topics considered include the research, development and applications of nanomaterials and novel componentry for these devices. Examples of applications of these electrochemical power sources include: • Portable electronics • Electric and Hybrid Electric Vehicles • Uninterruptible Power Supply (UPS) systems • Storage of renewable energy • Satellites and deep space probes • Boats and ships, drones and aircrafts • Wearable energy storage systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信