Erfan Riyazi , Mohammad Jamshidi , Ali Esfandiar , Morteza Jafari Siavashani , Nader Sobhkhiz Vayghan
{"title":"通过表面等离子体将高效单光子耦合到单模光纤中","authors":"Erfan Riyazi , Mohammad Jamshidi , Ali Esfandiar , Morteza Jafari Siavashani , Nader Sobhkhiz Vayghan","doi":"10.1016/j.optcom.2024.131270","DOIUrl":null,"url":null,"abstract":"<div><div>Quanta of light (single photon) play as one of the building blocks of photonic based quantum computations, sensing, and communications. This makes a necessity to develop practical approaches for tuning, guiding, and coupling of single photons in photonic circuits for viable applications. Interaction and coupling efficiency of single photon into optical fibers is a technical bottleneck of quantum optics and should be addressed by novel design and materials. Here, we introduce a fiber-based micro-photonic design to directly coupling of the emitted single-photon to the core of a single mode fiber (SMF). The results of the simulation indicate that the emission of single photon source on a D-shaped SMF coated by a thin plasmonic film, provide remarkable amplifying of the evanescent field by confined surface plasmons into the SMF. The numerical analysis of different types and thicknesses of plasmonic materials by finite element method (FEM) is conducted to study the propagation vectors along the SMF as a function of the emission angle and wavelength of the single photon source. The results revealed that by the optimum thickness of the tantalum layer as novel plasmonic material, the best record of coupling efficiency can be achieved in the fiber optics communication region (<em>λ</em> ∼ 1550 nm). This approach sheds light on novel plasmonic-assisted coupling and promises a functional strategy for single photon manipulation in various fields of quantum optics.</div></div>","PeriodicalId":19586,"journal":{"name":"Optics Communications","volume":"575 ","pages":"Article 131270"},"PeriodicalIF":2.2000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Highly efficient single photon coupling via surface plasmons into single-mode optical fiber\",\"authors\":\"Erfan Riyazi , Mohammad Jamshidi , Ali Esfandiar , Morteza Jafari Siavashani , Nader Sobhkhiz Vayghan\",\"doi\":\"10.1016/j.optcom.2024.131270\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Quanta of light (single photon) play as one of the building blocks of photonic based quantum computations, sensing, and communications. This makes a necessity to develop practical approaches for tuning, guiding, and coupling of single photons in photonic circuits for viable applications. Interaction and coupling efficiency of single photon into optical fibers is a technical bottleneck of quantum optics and should be addressed by novel design and materials. Here, we introduce a fiber-based micro-photonic design to directly coupling of the emitted single-photon to the core of a single mode fiber (SMF). The results of the simulation indicate that the emission of single photon source on a D-shaped SMF coated by a thin plasmonic film, provide remarkable amplifying of the evanescent field by confined surface plasmons into the SMF. The numerical analysis of different types and thicknesses of plasmonic materials by finite element method (FEM) is conducted to study the propagation vectors along the SMF as a function of the emission angle and wavelength of the single photon source. The results revealed that by the optimum thickness of the tantalum layer as novel plasmonic material, the best record of coupling efficiency can be achieved in the fiber optics communication region (<em>λ</em> ∼ 1550 nm). This approach sheds light on novel plasmonic-assisted coupling and promises a functional strategy for single photon manipulation in various fields of quantum optics.</div></div>\",\"PeriodicalId\":19586,\"journal\":{\"name\":\"Optics Communications\",\"volume\":\"575 \",\"pages\":\"Article 131270\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optics Communications\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0030401824010071\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optics Communications","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0030401824010071","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
Highly efficient single photon coupling via surface plasmons into single-mode optical fiber
Quanta of light (single photon) play as one of the building blocks of photonic based quantum computations, sensing, and communications. This makes a necessity to develop practical approaches for tuning, guiding, and coupling of single photons in photonic circuits for viable applications. Interaction and coupling efficiency of single photon into optical fibers is a technical bottleneck of quantum optics and should be addressed by novel design and materials. Here, we introduce a fiber-based micro-photonic design to directly coupling of the emitted single-photon to the core of a single mode fiber (SMF). The results of the simulation indicate that the emission of single photon source on a D-shaped SMF coated by a thin plasmonic film, provide remarkable amplifying of the evanescent field by confined surface plasmons into the SMF. The numerical analysis of different types and thicknesses of plasmonic materials by finite element method (FEM) is conducted to study the propagation vectors along the SMF as a function of the emission angle and wavelength of the single photon source. The results revealed that by the optimum thickness of the tantalum layer as novel plasmonic material, the best record of coupling efficiency can be achieved in the fiber optics communication region (λ ∼ 1550 nm). This approach sheds light on novel plasmonic-assisted coupling and promises a functional strategy for single photon manipulation in various fields of quantum optics.
期刊介绍:
Optics Communications invites original and timely contributions containing new results in various fields of optics and photonics. The journal considers theoretical and experimental research in areas ranging from the fundamental properties of light to technological applications. Topics covered include classical and quantum optics, optical physics and light-matter interactions, lasers, imaging, guided-wave optics and optical information processing. Manuscripts should offer clear evidence of novelty and significance. Papers concentrating on mathematical and computational issues, with limited connection to optics, are not suitable for publication in the Journal. Similarly, small technical advances, or papers concerned only with engineering applications or issues of materials science fall outside the journal scope.