基于动态二硫键和多重氢键的可回收蓖麻油聚氨酯,可用作粘合剂和光热转换材料

IF 5.6 1区 农林科学 Q1 AGRICULTURAL ENGINEERING
Yan Fang , Qiaoguang Li , Zhimin Kou , Yufeng Ma , Meng Zhang , Yun Hu , Puyou Jia , Yonghong Zhou
{"title":"基于动态二硫键和多重氢键的可回收蓖麻油聚氨酯,可用作粘合剂和光热转换材料","authors":"Yan Fang ,&nbsp;Qiaoguang Li ,&nbsp;Zhimin Kou ,&nbsp;Yufeng Ma ,&nbsp;Meng Zhang ,&nbsp;Yun Hu ,&nbsp;Puyou Jia ,&nbsp;Yonghong Zhou","doi":"10.1016/j.indcrop.2024.120027","DOIUrl":null,"url":null,"abstract":"<div><div>As an important polymer material, polyurethane brings convenience to daily life but also causes environmental problems, and the manufacturing of bio-based repairable, re-processable and sturdy materials can effectively reduce environmental pressure. Herein a low temperature recyclable polyurethane (PU) was developed with castor oil (CO) by combining isophorone diisocyanate (IPDI), dynamic disulfide bonds and hydrogen bonds. The castor oil-based PU showed impressive tensile strength (16.1 MPa) remarkable elongation at break (1055.8 %), and high bonding power (up to ∼6 MPa) with bonding wood chips. The dynamic disulfide bonds and hydrogen bonds imparted the bio-based PU with outstanding elastic recovery, impressive self-healing capability (up to ∼90 %), short relaxation time (5–6 min at 180°C), favorable shape memory behavior, and multiple recyclability. By mixing different proportions of carbon nanotubes (CNTs), recyclable and stretchable conductive composites are realized. In addition, an integrated system of high-efficiency bio-based solar photovoltaic generator is demonstrated for simulating the ambient sunlight-heat-electricity conversion, which provides some guidance for the efficient use of solar energy.</div></div>","PeriodicalId":13581,"journal":{"name":"Industrial Crops and Products","volume":"222 ","pages":"Article 120027"},"PeriodicalIF":5.6000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Recyclable polyurethane from castor oil based on dynamic disulfide bonds and multiple hydrogen bonds as adhesive and photothermal conversion materials\",\"authors\":\"Yan Fang ,&nbsp;Qiaoguang Li ,&nbsp;Zhimin Kou ,&nbsp;Yufeng Ma ,&nbsp;Meng Zhang ,&nbsp;Yun Hu ,&nbsp;Puyou Jia ,&nbsp;Yonghong Zhou\",\"doi\":\"10.1016/j.indcrop.2024.120027\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>As an important polymer material, polyurethane brings convenience to daily life but also causes environmental problems, and the manufacturing of bio-based repairable, re-processable and sturdy materials can effectively reduce environmental pressure. Herein a low temperature recyclable polyurethane (PU) was developed with castor oil (CO) by combining isophorone diisocyanate (IPDI), dynamic disulfide bonds and hydrogen bonds. The castor oil-based PU showed impressive tensile strength (16.1 MPa) remarkable elongation at break (1055.8 %), and high bonding power (up to ∼6 MPa) with bonding wood chips. The dynamic disulfide bonds and hydrogen bonds imparted the bio-based PU with outstanding elastic recovery, impressive self-healing capability (up to ∼90 %), short relaxation time (5–6 min at 180°C), favorable shape memory behavior, and multiple recyclability. By mixing different proportions of carbon nanotubes (CNTs), recyclable and stretchable conductive composites are realized. In addition, an integrated system of high-efficiency bio-based solar photovoltaic generator is demonstrated for simulating the ambient sunlight-heat-electricity conversion, which provides some guidance for the efficient use of solar energy.</div></div>\",\"PeriodicalId\":13581,\"journal\":{\"name\":\"Industrial Crops and Products\",\"volume\":\"222 \",\"pages\":\"Article 120027\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2024-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Industrial Crops and Products\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0926669024020041\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRICULTURAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Industrial Crops and Products","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0926669024020041","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURAL ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

聚氨酯作为一种重要的高分子材料,在给人们日常生活带来便利的同时,也带来了环境问题,而制造可修复、可再加工、坚固耐用的生物基材料可有效减轻环境压力。本文通过结合异佛尔酮二异氰酸酯(IPDI)、动态二硫键和氢键,用蓖麻油(CO)开发了一种低温可回收聚氨酯(PU)。蓖麻油基聚氨酯显示出惊人的拉伸强度(16.1 兆帕)、显著的断裂伸长率(1055.8%)以及与木屑的高粘合力(高达 6 兆帕)。动态二硫键和氢键赋予了生物基聚氨酯出色的弹性恢复能力、令人印象深刻的自愈能力(高达 ∼ 90 %)、较短的松弛时间(180°C 下 5-6 分钟)、良好的形状记忆行为和多重可回收性。通过混合不同比例的碳纳米管,实现了可回收和可拉伸的导电复合材料。此外,还展示了一个高效生物基太阳能光伏发电机集成系统,用于模拟环境日光-热-电转换,为高效利用太阳能提供了一些指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Recyclable polyurethane from castor oil based on dynamic disulfide bonds and multiple hydrogen bonds as adhesive and photothermal conversion materials
As an important polymer material, polyurethane brings convenience to daily life but also causes environmental problems, and the manufacturing of bio-based repairable, re-processable and sturdy materials can effectively reduce environmental pressure. Herein a low temperature recyclable polyurethane (PU) was developed with castor oil (CO) by combining isophorone diisocyanate (IPDI), dynamic disulfide bonds and hydrogen bonds. The castor oil-based PU showed impressive tensile strength (16.1 MPa) remarkable elongation at break (1055.8 %), and high bonding power (up to ∼6 MPa) with bonding wood chips. The dynamic disulfide bonds and hydrogen bonds imparted the bio-based PU with outstanding elastic recovery, impressive self-healing capability (up to ∼90 %), short relaxation time (5–6 min at 180°C), favorable shape memory behavior, and multiple recyclability. By mixing different proportions of carbon nanotubes (CNTs), recyclable and stretchable conductive composites are realized. In addition, an integrated system of high-efficiency bio-based solar photovoltaic generator is demonstrated for simulating the ambient sunlight-heat-electricity conversion, which provides some guidance for the efficient use of solar energy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Industrial Crops and Products
Industrial Crops and Products 农林科学-农业工程
CiteScore
9.50
自引率
8.50%
发文量
1518
审稿时长
43 days
期刊介绍: Industrial Crops and Products is an International Journal publishing academic and industrial research on industrial (defined as non-food/non-feed) crops and products. Papers concern both crop-oriented and bio-based materials from crops-oriented research, and should be of interest to an international audience, hypothesis driven, and where comparisons are made statistics performed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信