Yan Fang , Qiaoguang Li , Zhimin Kou , Yufeng Ma , Meng Zhang , Yun Hu , Puyou Jia , Yonghong Zhou
{"title":"基于动态二硫键和多重氢键的可回收蓖麻油聚氨酯,可用作粘合剂和光热转换材料","authors":"Yan Fang , Qiaoguang Li , Zhimin Kou , Yufeng Ma , Meng Zhang , Yun Hu , Puyou Jia , Yonghong Zhou","doi":"10.1016/j.indcrop.2024.120027","DOIUrl":null,"url":null,"abstract":"<div><div>As an important polymer material, polyurethane brings convenience to daily life but also causes environmental problems, and the manufacturing of bio-based repairable, re-processable and sturdy materials can effectively reduce environmental pressure. Herein a low temperature recyclable polyurethane (PU) was developed with castor oil (CO) by combining isophorone diisocyanate (IPDI), dynamic disulfide bonds and hydrogen bonds. The castor oil-based PU showed impressive tensile strength (16.1 MPa) remarkable elongation at break (1055.8 %), and high bonding power (up to ∼6 MPa) with bonding wood chips. The dynamic disulfide bonds and hydrogen bonds imparted the bio-based PU with outstanding elastic recovery, impressive self-healing capability (up to ∼90 %), short relaxation time (5–6 min at 180°C), favorable shape memory behavior, and multiple recyclability. By mixing different proportions of carbon nanotubes (CNTs), recyclable and stretchable conductive composites are realized. In addition, an integrated system of high-efficiency bio-based solar photovoltaic generator is demonstrated for simulating the ambient sunlight-heat-electricity conversion, which provides some guidance for the efficient use of solar energy.</div></div>","PeriodicalId":13581,"journal":{"name":"Industrial Crops and Products","volume":"222 ","pages":"Article 120027"},"PeriodicalIF":5.6000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Recyclable polyurethane from castor oil based on dynamic disulfide bonds and multiple hydrogen bonds as adhesive and photothermal conversion materials\",\"authors\":\"Yan Fang , Qiaoguang Li , Zhimin Kou , Yufeng Ma , Meng Zhang , Yun Hu , Puyou Jia , Yonghong Zhou\",\"doi\":\"10.1016/j.indcrop.2024.120027\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>As an important polymer material, polyurethane brings convenience to daily life but also causes environmental problems, and the manufacturing of bio-based repairable, re-processable and sturdy materials can effectively reduce environmental pressure. Herein a low temperature recyclable polyurethane (PU) was developed with castor oil (CO) by combining isophorone diisocyanate (IPDI), dynamic disulfide bonds and hydrogen bonds. The castor oil-based PU showed impressive tensile strength (16.1 MPa) remarkable elongation at break (1055.8 %), and high bonding power (up to ∼6 MPa) with bonding wood chips. The dynamic disulfide bonds and hydrogen bonds imparted the bio-based PU with outstanding elastic recovery, impressive self-healing capability (up to ∼90 %), short relaxation time (5–6 min at 180°C), favorable shape memory behavior, and multiple recyclability. By mixing different proportions of carbon nanotubes (CNTs), recyclable and stretchable conductive composites are realized. In addition, an integrated system of high-efficiency bio-based solar photovoltaic generator is demonstrated for simulating the ambient sunlight-heat-electricity conversion, which provides some guidance for the efficient use of solar energy.</div></div>\",\"PeriodicalId\":13581,\"journal\":{\"name\":\"Industrial Crops and Products\",\"volume\":\"222 \",\"pages\":\"Article 120027\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2024-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Industrial Crops and Products\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0926669024020041\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRICULTURAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Industrial Crops and Products","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0926669024020041","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURAL ENGINEERING","Score":null,"Total":0}
Recyclable polyurethane from castor oil based on dynamic disulfide bonds and multiple hydrogen bonds as adhesive and photothermal conversion materials
As an important polymer material, polyurethane brings convenience to daily life but also causes environmental problems, and the manufacturing of bio-based repairable, re-processable and sturdy materials can effectively reduce environmental pressure. Herein a low temperature recyclable polyurethane (PU) was developed with castor oil (CO) by combining isophorone diisocyanate (IPDI), dynamic disulfide bonds and hydrogen bonds. The castor oil-based PU showed impressive tensile strength (16.1 MPa) remarkable elongation at break (1055.8 %), and high bonding power (up to ∼6 MPa) with bonding wood chips. The dynamic disulfide bonds and hydrogen bonds imparted the bio-based PU with outstanding elastic recovery, impressive self-healing capability (up to ∼90 %), short relaxation time (5–6 min at 180°C), favorable shape memory behavior, and multiple recyclability. By mixing different proportions of carbon nanotubes (CNTs), recyclable and stretchable conductive composites are realized. In addition, an integrated system of high-efficiency bio-based solar photovoltaic generator is demonstrated for simulating the ambient sunlight-heat-electricity conversion, which provides some guidance for the efficient use of solar energy.
期刊介绍:
Industrial Crops and Products is an International Journal publishing academic and industrial research on industrial (defined as non-food/non-feed) crops and products. Papers concern both crop-oriented and bio-based materials from crops-oriented research, and should be of interest to an international audience, hypothesis driven, and where comparisons are made statistics performed.