Hanyue Jiang , Haichang Yang , Yaowen Xing , Yijun Cao , Xiahui Gui
{"title":"叶轮速度对纳米气泡浮选超细煤粒效率的影响","authors":"Hanyue Jiang , Haichang Yang , Yaowen Xing , Yijun Cao , Xiahui Gui","doi":"10.1016/j.powtec.2024.120431","DOIUrl":null,"url":null,"abstract":"<div><div>Ultrafine particles exhibit poor flotation behavior due to the low collision efficiencies with conventional gas bubbles. Introducing nanobubbles are expected to improve the collision probability of ultra-fine particles with bubbles. However, it remains unclear whether nanobubbles can enhance flotation at high impeller speeds during flotation process as strong turbulence may scour away the nanobubbles from solid-liquid interface of particles. This study investigates the influence and the underlying mechanism of nanobubbles on flotation performance of ultrafine coal particles under varying impeller speeds. Specifically, the surface nanobubbles (SNBs) and bulk nanobubbles (BNBs) were utilized respectively, which were produced based on the temperature difference method and hydrodynamic cavitation, and characteristized by atomic force microscopy (AFM) and nanoparticle tracking analysis (NTA), respectively. The formation of ultrafine coal particle aggregates at different impeller speeds was analyzed through laser particle size analyzer (LPSA) and high-speed camera imaging. Result showed that as the impeller speed increases, the radius of the aggregates increases, and the number and radius of aggregates in SNBs/BNBs slurries is significantly larger than that in conventional slurry at varying impeller speeds from 1200 to 2800 rpm, which is consistent with the increased flotation recoveries and flotation rates. It is demonstrated that nanobubbles remain stable even at high impeller speeds, and thus promote aggregation and thereby enhance flotation performance. The findings of this study provide theoretical support and valuable insights for ultrafine particle separation technologies.</div></div>","PeriodicalId":407,"journal":{"name":"Powder Technology","volume":"449 ","pages":"Article 120431"},"PeriodicalIF":4.5000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The effect of impeller speeds on the nanobubbles flotation efficiency of ultrafine coal particles\",\"authors\":\"Hanyue Jiang , Haichang Yang , Yaowen Xing , Yijun Cao , Xiahui Gui\",\"doi\":\"10.1016/j.powtec.2024.120431\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Ultrafine particles exhibit poor flotation behavior due to the low collision efficiencies with conventional gas bubbles. Introducing nanobubbles are expected to improve the collision probability of ultra-fine particles with bubbles. However, it remains unclear whether nanobubbles can enhance flotation at high impeller speeds during flotation process as strong turbulence may scour away the nanobubbles from solid-liquid interface of particles. This study investigates the influence and the underlying mechanism of nanobubbles on flotation performance of ultrafine coal particles under varying impeller speeds. Specifically, the surface nanobubbles (SNBs) and bulk nanobubbles (BNBs) were utilized respectively, which were produced based on the temperature difference method and hydrodynamic cavitation, and characteristized by atomic force microscopy (AFM) and nanoparticle tracking analysis (NTA), respectively. The formation of ultrafine coal particle aggregates at different impeller speeds was analyzed through laser particle size analyzer (LPSA) and high-speed camera imaging. Result showed that as the impeller speed increases, the radius of the aggregates increases, and the number and radius of aggregates in SNBs/BNBs slurries is significantly larger than that in conventional slurry at varying impeller speeds from 1200 to 2800 rpm, which is consistent with the increased flotation recoveries and flotation rates. It is demonstrated that nanobubbles remain stable even at high impeller speeds, and thus promote aggregation and thereby enhance flotation performance. The findings of this study provide theoretical support and valuable insights for ultrafine particle separation technologies.</div></div>\",\"PeriodicalId\":407,\"journal\":{\"name\":\"Powder Technology\",\"volume\":\"449 \",\"pages\":\"Article 120431\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2024-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Powder Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0032591024010751\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Powder Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0032591024010751","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
The effect of impeller speeds on the nanobubbles flotation efficiency of ultrafine coal particles
Ultrafine particles exhibit poor flotation behavior due to the low collision efficiencies with conventional gas bubbles. Introducing nanobubbles are expected to improve the collision probability of ultra-fine particles with bubbles. However, it remains unclear whether nanobubbles can enhance flotation at high impeller speeds during flotation process as strong turbulence may scour away the nanobubbles from solid-liquid interface of particles. This study investigates the influence and the underlying mechanism of nanobubbles on flotation performance of ultrafine coal particles under varying impeller speeds. Specifically, the surface nanobubbles (SNBs) and bulk nanobubbles (BNBs) were utilized respectively, which were produced based on the temperature difference method and hydrodynamic cavitation, and characteristized by atomic force microscopy (AFM) and nanoparticle tracking analysis (NTA), respectively. The formation of ultrafine coal particle aggregates at different impeller speeds was analyzed through laser particle size analyzer (LPSA) and high-speed camera imaging. Result showed that as the impeller speed increases, the radius of the aggregates increases, and the number and radius of aggregates in SNBs/BNBs slurries is significantly larger than that in conventional slurry at varying impeller speeds from 1200 to 2800 rpm, which is consistent with the increased flotation recoveries and flotation rates. It is demonstrated that nanobubbles remain stable even at high impeller speeds, and thus promote aggregation and thereby enhance flotation performance. The findings of this study provide theoretical support and valuable insights for ultrafine particle separation technologies.
期刊介绍:
Powder Technology is an International Journal on the Science and Technology of Wet and Dry Particulate Systems. Powder Technology publishes papers on all aspects of the formation of particles and their characterisation and on the study of systems containing particulate solids. No limitation is imposed on the size of the particles, which may range from nanometre scale, as in pigments or aerosols, to that of mined or quarried materials. The following list of topics is not intended to be comprehensive, but rather to indicate typical subjects which fall within the scope of the journal's interests:
Formation and synthesis of particles by precipitation and other methods.
Modification of particles by agglomeration, coating, comminution and attrition.
Characterisation of the size, shape, surface area, pore structure and strength of particles and agglomerates (including the origins and effects of inter particle forces).
Packing, failure, flow and permeability of assemblies of particles.
Particle-particle interactions and suspension rheology.
Handling and processing operations such as slurry flow, fluidization, pneumatic conveying.
Interactions between particles and their environment, including delivery of particulate products to the body.
Applications of particle technology in production of pharmaceuticals, chemicals, foods, pigments, structural, and functional materials and in environmental and energy related matters.
For materials-oriented contributions we are looking for articles revealing the effect of particle/powder characteristics (size, morphology and composition, in that order) on material performance or functionality and, ideally, comparison to any industrial standard.