Yifan Duan , Xiaojie Liu , Ran Liu , Xin Li , Hongwei Li , Hongyang Li , Yanqin Sun , Yujie Zhang , Qing Lv
{"title":"应用于高炉风口图像的新型异常检测和分类算法","authors":"Yifan Duan , Xiaojie Liu , Ran Liu , Xin Li , Hongwei Li , Hongyang Li , Yanqin Sun , Yujie Zhang , Qing Lv","doi":"10.1016/j.engappai.2024.109558","DOIUrl":null,"url":null,"abstract":"<div><div>Traditional relying on manual experience to assess the tuyere status consumes significant human resources. In the era of intelligent blast furnaces and intensified smelting, this approach struggles to meet the demands for accuracy and real-time assessment, posing challenges to safety and efficiency of blast furnace production. Tuyere images exhibit high feature similarity, and the number of samples is often limited. Therefore, if a simple convolution operation is only used, it will be difficult to discern differences across various images. To address this challenge and cater to the requirements of intelligent tuyere status recognition across different steel enterprises, we designed a novel deep neural network algorithm called ES-SFRNet (Enhanced Sequential: Feature Fusion and Recognition Network), building upon our prior research. The algorithm concurrently modeled tuyere images alongside relevant time series data, comprising three components: Feature pre-extraction, Tuyere status recognition, and Generalization & Robustness. The first two modules focus on feature extraction and fusion of tuyere images, while leveraging edge detection information from the image, we developed a mathematical index <span><math><mrow><msub><mi>A</mi><mi>r</mi></msub></mrow></math></span> (Area Ratio) to serve as an auxiliary criterion for tuyere status recognition. Given the model's future scalability and multi-scenario application, the final module focuses on knowledge integration and parameter control. Test results reveal an overall accuracy rate of 99.3% for the ES-SFRNet algorithm, effectively capturing key parameters to facilitate on-site operations. In comparison to other mainstream object detection algorithms, our algorithm framework excels in tuyere image feature extraction and recognition, which can offer broad applications to Chinese blast furnace ironmaking industry.</div></div>","PeriodicalId":50523,"journal":{"name":"Engineering Applications of Artificial Intelligence","volume":"139 ","pages":"Article 109558"},"PeriodicalIF":7.5000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A novel anomaly detection and classification algorithm for application in tuyere images of blast furnace\",\"authors\":\"Yifan Duan , Xiaojie Liu , Ran Liu , Xin Li , Hongwei Li , Hongyang Li , Yanqin Sun , Yujie Zhang , Qing Lv\",\"doi\":\"10.1016/j.engappai.2024.109558\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Traditional relying on manual experience to assess the tuyere status consumes significant human resources. In the era of intelligent blast furnaces and intensified smelting, this approach struggles to meet the demands for accuracy and real-time assessment, posing challenges to safety and efficiency of blast furnace production. Tuyere images exhibit high feature similarity, and the number of samples is often limited. Therefore, if a simple convolution operation is only used, it will be difficult to discern differences across various images. To address this challenge and cater to the requirements of intelligent tuyere status recognition across different steel enterprises, we designed a novel deep neural network algorithm called ES-SFRNet (Enhanced Sequential: Feature Fusion and Recognition Network), building upon our prior research. The algorithm concurrently modeled tuyere images alongside relevant time series data, comprising three components: Feature pre-extraction, Tuyere status recognition, and Generalization & Robustness. The first two modules focus on feature extraction and fusion of tuyere images, while leveraging edge detection information from the image, we developed a mathematical index <span><math><mrow><msub><mi>A</mi><mi>r</mi></msub></mrow></math></span> (Area Ratio) to serve as an auxiliary criterion for tuyere status recognition. Given the model's future scalability and multi-scenario application, the final module focuses on knowledge integration and parameter control. Test results reveal an overall accuracy rate of 99.3% for the ES-SFRNet algorithm, effectively capturing key parameters to facilitate on-site operations. In comparison to other mainstream object detection algorithms, our algorithm framework excels in tuyere image feature extraction and recognition, which can offer broad applications to Chinese blast furnace ironmaking industry.</div></div>\",\"PeriodicalId\":50523,\"journal\":{\"name\":\"Engineering Applications of Artificial Intelligence\",\"volume\":\"139 \",\"pages\":\"Article 109558\"},\"PeriodicalIF\":7.5000,\"publicationDate\":\"2024-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Engineering Applications of Artificial Intelligence\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0952197624017160\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Applications of Artificial Intelligence","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0952197624017160","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
A novel anomaly detection and classification algorithm for application in tuyere images of blast furnace
Traditional relying on manual experience to assess the tuyere status consumes significant human resources. In the era of intelligent blast furnaces and intensified smelting, this approach struggles to meet the demands for accuracy and real-time assessment, posing challenges to safety and efficiency of blast furnace production. Tuyere images exhibit high feature similarity, and the number of samples is often limited. Therefore, if a simple convolution operation is only used, it will be difficult to discern differences across various images. To address this challenge and cater to the requirements of intelligent tuyere status recognition across different steel enterprises, we designed a novel deep neural network algorithm called ES-SFRNet (Enhanced Sequential: Feature Fusion and Recognition Network), building upon our prior research. The algorithm concurrently modeled tuyere images alongside relevant time series data, comprising three components: Feature pre-extraction, Tuyere status recognition, and Generalization & Robustness. The first two modules focus on feature extraction and fusion of tuyere images, while leveraging edge detection information from the image, we developed a mathematical index (Area Ratio) to serve as an auxiliary criterion for tuyere status recognition. Given the model's future scalability and multi-scenario application, the final module focuses on knowledge integration and parameter control. Test results reveal an overall accuracy rate of 99.3% for the ES-SFRNet algorithm, effectively capturing key parameters to facilitate on-site operations. In comparison to other mainstream object detection algorithms, our algorithm framework excels in tuyere image feature extraction and recognition, which can offer broad applications to Chinese blast furnace ironmaking industry.
期刊介绍:
Artificial Intelligence (AI) is pivotal in driving the fourth industrial revolution, witnessing remarkable advancements across various machine learning methodologies. AI techniques have become indispensable tools for practicing engineers, enabling them to tackle previously insurmountable challenges. Engineering Applications of Artificial Intelligence serves as a global platform for the swift dissemination of research elucidating the practical application of AI methods across all engineering disciplines. Submitted papers are expected to present novel aspects of AI utilized in real-world engineering applications, validated using publicly available datasets to ensure the replicability of research outcomes. Join us in exploring the transformative potential of AI in engineering.