基于组的加权核规范最小化,利用 TV 正则化去除考奇噪声

IF 2.9 3区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Wen Gao , Jianguang Zhu , Binbin Hao
{"title":"基于组的加权核规范最小化,利用 TV 正则化去除考奇噪声","authors":"Wen Gao ,&nbsp;Jianguang Zhu ,&nbsp;Binbin Hao","doi":"10.1016/j.dsp.2024.104836","DOIUrl":null,"url":null,"abstract":"<div><div>Cauchy noise, as a kind of impulsive and non-Gaussian noise, has recently received a lot of attention in the image processing. In this paper, we combine group-based low rank regularization and total variation (TV) regularization to propose a new hybrid variational model for Cauchy noise removal. In order to solve the proposed model, we develop an efficient alternating minimization method by incorporating the Chambolle projection algorithm, the weighted nuclear norm minimization algorithm, and Newton method. Numerical experiments demonstrate that the proposed method is superior to the existing state-of-the-art methods in terms of visual quality and quantitative measures.</div></div>","PeriodicalId":51011,"journal":{"name":"Digital Signal Processing","volume":"156 ","pages":"Article 104836"},"PeriodicalIF":2.9000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Group-based weighted nuclear norm minimization for Cauchy noise removal with TV regularization\",\"authors\":\"Wen Gao ,&nbsp;Jianguang Zhu ,&nbsp;Binbin Hao\",\"doi\":\"10.1016/j.dsp.2024.104836\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Cauchy noise, as a kind of impulsive and non-Gaussian noise, has recently received a lot of attention in the image processing. In this paper, we combine group-based low rank regularization and total variation (TV) regularization to propose a new hybrid variational model for Cauchy noise removal. In order to solve the proposed model, we develop an efficient alternating minimization method by incorporating the Chambolle projection algorithm, the weighted nuclear norm minimization algorithm, and Newton method. Numerical experiments demonstrate that the proposed method is superior to the existing state-of-the-art methods in terms of visual quality and quantitative measures.</div></div>\",\"PeriodicalId\":51011,\"journal\":{\"name\":\"Digital Signal Processing\",\"volume\":\"156 \",\"pages\":\"Article 104836\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Digital Signal Processing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1051200424004615\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digital Signal Processing","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1051200424004615","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

考奇噪声作为一种脉冲噪声和非高斯噪声,近年来在图像处理领域受到广泛关注。在本文中,我们将基于组的低秩正则化和总变异(TV)正则化结合起来,提出了一种新的用于去除考基噪声的混合变异模型。为了求解所提出的模型,我们结合 Chambolle 投影算法、加权核规范最小化算法和牛顿法,开发了一种高效的交替最小化方法。数值实验证明,就视觉质量和定量指标而言,所提出的方法优于现有的最先进方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Group-based weighted nuclear norm minimization for Cauchy noise removal with TV regularization
Cauchy noise, as a kind of impulsive and non-Gaussian noise, has recently received a lot of attention in the image processing. In this paper, we combine group-based low rank regularization and total variation (TV) regularization to propose a new hybrid variational model for Cauchy noise removal. In order to solve the proposed model, we develop an efficient alternating minimization method by incorporating the Chambolle projection algorithm, the weighted nuclear norm minimization algorithm, and Newton method. Numerical experiments demonstrate that the proposed method is superior to the existing state-of-the-art methods in terms of visual quality and quantitative measures.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Digital Signal Processing
Digital Signal Processing 工程技术-工程:电子与电气
CiteScore
5.30
自引率
17.20%
发文量
435
审稿时长
66 days
期刊介绍: Digital Signal Processing: A Review Journal is one of the oldest and most established journals in the field of signal processing yet it aims to be the most innovative. The Journal invites top quality research articles at the frontiers of research in all aspects of signal processing. Our objective is to provide a platform for the publication of ground-breaking research in signal processing with both academic and industrial appeal. The journal has a special emphasis on statistical signal processing methodology such as Bayesian signal processing, and encourages articles on emerging applications of signal processing such as: • big data• machine learning• internet of things• information security• systems biology and computational biology,• financial time series analysis,• autonomous vehicles,• quantum computing,• neuromorphic engineering,• human-computer interaction and intelligent user interfaces,• environmental signal processing,• geophysical signal processing including seismic signal processing,• chemioinformatics and bioinformatics,• audio, visual and performance arts,• disaster management and prevention,• renewable energy,
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信