{"title":"通过机器学习诊断工业机器故障的路线图:简要回顾","authors":"Govind Vashishtha , Sumika Chauhan , Mert Sehri , Radoslaw Zimroz , Patrick Dumond , Rajesh Kumar , Munish Kumar Gupta","doi":"10.1016/j.measurement.2024.116216","DOIUrl":null,"url":null,"abstract":"<div><div>In fault diagnosis, machine learning theories are gaining popularity as they proved to be an efficient tool that not only reduces human effort but also identifies the health conditions of the machines automatically. In this work, an attempt has been made to systematically review the progress of machine learning theories in fault diagnosis from scratch to future perspectives. Initially, artificial intelligence came into the picture which started to weaken the human effort whose efficiency relies on feature extraction which depends on expert knowledge. The introduction of deep learning theories has reformed the fault diagnosis process by realising the artificial aid, encouraging end-to-end encryption in the diagnostic procedure. The deep learning theories have also filled the gap between the large amount of monitoring data and the health conditions of industrial machines. The future of deep learning theories i.e. transfer learning which uses the knowledge of one domain to another related domain during fault diagnosis has been reviewed. In last, the research trends of the machine learning theories have been briefly discussed along with their challenges in fault diagnostics.</div></div>","PeriodicalId":18349,"journal":{"name":"Measurement","volume":"242 ","pages":"Article 116216"},"PeriodicalIF":5.2000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A roadmap to fault diagnosis of industrial machines via machine learning: A brief review\",\"authors\":\"Govind Vashishtha , Sumika Chauhan , Mert Sehri , Radoslaw Zimroz , Patrick Dumond , Rajesh Kumar , Munish Kumar Gupta\",\"doi\":\"10.1016/j.measurement.2024.116216\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In fault diagnosis, machine learning theories are gaining popularity as they proved to be an efficient tool that not only reduces human effort but also identifies the health conditions of the machines automatically. In this work, an attempt has been made to systematically review the progress of machine learning theories in fault diagnosis from scratch to future perspectives. Initially, artificial intelligence came into the picture which started to weaken the human effort whose efficiency relies on feature extraction which depends on expert knowledge. The introduction of deep learning theories has reformed the fault diagnosis process by realising the artificial aid, encouraging end-to-end encryption in the diagnostic procedure. The deep learning theories have also filled the gap between the large amount of monitoring data and the health conditions of industrial machines. The future of deep learning theories i.e. transfer learning which uses the knowledge of one domain to another related domain during fault diagnosis has been reviewed. In last, the research trends of the machine learning theories have been briefly discussed along with their challenges in fault diagnostics.</div></div>\",\"PeriodicalId\":18349,\"journal\":{\"name\":\"Measurement\",\"volume\":\"242 \",\"pages\":\"Article 116216\"},\"PeriodicalIF\":5.2000,\"publicationDate\":\"2024-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Measurement\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0263224124021018\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Measurement","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0263224124021018","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
A roadmap to fault diagnosis of industrial machines via machine learning: A brief review
In fault diagnosis, machine learning theories are gaining popularity as they proved to be an efficient tool that not only reduces human effort but also identifies the health conditions of the machines automatically. In this work, an attempt has been made to systematically review the progress of machine learning theories in fault diagnosis from scratch to future perspectives. Initially, artificial intelligence came into the picture which started to weaken the human effort whose efficiency relies on feature extraction which depends on expert knowledge. The introduction of deep learning theories has reformed the fault diagnosis process by realising the artificial aid, encouraging end-to-end encryption in the diagnostic procedure. The deep learning theories have also filled the gap between the large amount of monitoring data and the health conditions of industrial machines. The future of deep learning theories i.e. transfer learning which uses the knowledge of one domain to another related domain during fault diagnosis has been reviewed. In last, the research trends of the machine learning theories have been briefly discussed along with their challenges in fault diagnostics.
期刊介绍:
Contributions are invited on novel achievements in all fields of measurement and instrumentation science and technology. Authors are encouraged to submit novel material, whose ultimate goal is an advancement in the state of the art of: measurement and metrology fundamentals, sensors, measurement instruments, measurement and estimation techniques, measurement data processing and fusion algorithms, evaluation procedures and methodologies for plants and industrial processes, performance analysis of systems, processes and algorithms, mathematical models for measurement-oriented purposes, distributed measurement systems in a connected world.