具有完美匹配的连通图的无符号拉普拉奇特征值 2 的倍率

IF 1 3区 数学 Q3 MATHEMATICS, APPLIED
Jinxing Zhao , Xiaoxiang Yu
{"title":"具有完美匹配的连通图的无符号拉普拉奇特征值 2 的倍率","authors":"Jinxing Zhao ,&nbsp;Xiaoxiang Yu","doi":"10.1016/j.dam.2024.11.003","DOIUrl":null,"url":null,"abstract":"<div><div>The signless Laplacian matrix of a graph <span><math><mi>G</mi></math></span> is defined as <span><math><mrow><mi>Q</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>=</mo><mi>D</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>+</mo><mi>A</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>, where <span><math><mrow><mi>D</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> is the degree-diagonal matrix of <span><math><mi>G</mi></math></span> and <span><math><mrow><mi>A</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> is the adjacency matrix of <span><math><mi>G</mi></math></span>. The multiplicity of an eigenvalue <span><math><mi>μ</mi></math></span> of <span><math><mrow><mi>Q</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> is denoted by <span><math><mrow><msub><mrow><mi>m</mi></mrow><mrow><mi>Q</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>,</mo><mi>μ</mi><mo>)</mo></mrow></mrow></math></span>. Let <span><math><mrow><mi>G</mi><mo>=</mo><mi>C</mi><mrow><mo>(</mo><msub><mrow><mi>T</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>T</mi></mrow><mrow><mi>g</mi></mrow></msub><mo>)</mo></mrow></mrow></math></span> be a unicyclic graph with a perfect matching, where <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> is a rooted tree attached at the vertex <span><math><msub><mrow><mi>v</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> of the cycle <span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>g</mi></mrow></msub></math></span>. It is proved that <span><math><mrow><mi>Q</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> has 2 as an eigenvalue if and only if <span><math><mrow><mi>g</mi><mo>+</mo><mi>t</mi></mrow></math></span> is divisible by 4, where <span><math><mi>t</mi></math></span> is the number of <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> of even orders. Another main result of this article gives a characterization for a connected graph <span><math><mi>G</mi></math></span> with a perfect matching such that <span><math><mrow><msub><mrow><mi>m</mi></mrow><mrow><mi>Q</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>,</mo><mn>2</mn><mo>)</mo></mrow><mo>=</mo><mi>θ</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>+</mo><mn>1</mn></mrow></math></span>, where <span><math><mrow><mi>θ</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>=</mo><mrow><mo>|</mo><mi>E</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>|</mo></mrow><mo>−</mo><mrow><mo>|</mo><mi>V</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>|</mo></mrow><mo>+</mo><mn>1</mn></mrow></math></span> is the cyclomatic number of <span><math><mi>G</mi></math></span>.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"361 ","pages":"Pages 480-486"},"PeriodicalIF":1.0000,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multiplicity of signless Laplacian eigenvalue 2 of a connected graph with a perfect matching\",\"authors\":\"Jinxing Zhao ,&nbsp;Xiaoxiang Yu\",\"doi\":\"10.1016/j.dam.2024.11.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The signless Laplacian matrix of a graph <span><math><mi>G</mi></math></span> is defined as <span><math><mrow><mi>Q</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>=</mo><mi>D</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>+</mo><mi>A</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>, where <span><math><mrow><mi>D</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> is the degree-diagonal matrix of <span><math><mi>G</mi></math></span> and <span><math><mrow><mi>A</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> is the adjacency matrix of <span><math><mi>G</mi></math></span>. The multiplicity of an eigenvalue <span><math><mi>μ</mi></math></span> of <span><math><mrow><mi>Q</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> is denoted by <span><math><mrow><msub><mrow><mi>m</mi></mrow><mrow><mi>Q</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>,</mo><mi>μ</mi><mo>)</mo></mrow></mrow></math></span>. Let <span><math><mrow><mi>G</mi><mo>=</mo><mi>C</mi><mrow><mo>(</mo><msub><mrow><mi>T</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>T</mi></mrow><mrow><mi>g</mi></mrow></msub><mo>)</mo></mrow></mrow></math></span> be a unicyclic graph with a perfect matching, where <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> is a rooted tree attached at the vertex <span><math><msub><mrow><mi>v</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> of the cycle <span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>g</mi></mrow></msub></math></span>. It is proved that <span><math><mrow><mi>Q</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> has 2 as an eigenvalue if and only if <span><math><mrow><mi>g</mi><mo>+</mo><mi>t</mi></mrow></math></span> is divisible by 4, where <span><math><mi>t</mi></math></span> is the number of <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> of even orders. Another main result of this article gives a characterization for a connected graph <span><math><mi>G</mi></math></span> with a perfect matching such that <span><math><mrow><msub><mrow><mi>m</mi></mrow><mrow><mi>Q</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>,</mo><mn>2</mn><mo>)</mo></mrow><mo>=</mo><mi>θ</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>+</mo><mn>1</mn></mrow></math></span>, where <span><math><mrow><mi>θ</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>=</mo><mrow><mo>|</mo><mi>E</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>|</mo></mrow><mo>−</mo><mrow><mo>|</mo><mi>V</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>|</mo></mrow><mo>+</mo><mn>1</mn></mrow></math></span> is the cyclomatic number of <span><math><mi>G</mi></math></span>.</div></div>\",\"PeriodicalId\":50573,\"journal\":{\"name\":\"Discrete Applied Mathematics\",\"volume\":\"361 \",\"pages\":\"Pages 480-486\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0166218X24004724\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166218X24004724","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

图 G 的无符号拉普拉斯矩阵定义为 Q(G)=D(G)+A(G),其中 D(G) 是 G 的阶对角矩阵,A(G) 是 G 的邻接矩阵。Q(G) 的特征值 μ 的多重性用 mQ(G,μ) 表示。设 G=C(T1,...Tg) 是一个完美匹配的单环图,其中 Ti 是连接在循环 Cg 的顶点 vi 上的有根树。本文证明,当且仅当 g+t 能被 4 整除时,Q(G) 的特征值为 2,其中 t 是偶数阶 Ti 的个数。本文的另一个主要结果给出了具有完美匹配的连通图 G 的特征,即 mQ(G,2)=θ(G)+1,其中θ(G)=|E(G)|-|V(G)|+1 是 G 的循环数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multiplicity of signless Laplacian eigenvalue 2 of a connected graph with a perfect matching
The signless Laplacian matrix of a graph G is defined as Q(G)=D(G)+A(G), where D(G) is the degree-diagonal matrix of G and A(G) is the adjacency matrix of G. The multiplicity of an eigenvalue μ of Q(G) is denoted by mQ(G,μ). Let G=C(T1,,Tg) be a unicyclic graph with a perfect matching, where Ti is a rooted tree attached at the vertex vi of the cycle Cg. It is proved that Q(G) has 2 as an eigenvalue if and only if g+t is divisible by 4, where t is the number of Ti of even orders. Another main result of this article gives a characterization for a connected graph G with a perfect matching such that mQ(G,2)=θ(G)+1, where θ(G)=|E(G)||V(G)|+1 is the cyclomatic number of G.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Discrete Applied Mathematics
Discrete Applied Mathematics 数学-应用数学
CiteScore
2.30
自引率
9.10%
发文量
422
审稿时长
4.5 months
期刊介绍: The aim of Discrete Applied Mathematics is to bring together research papers in different areas of algorithmic and applicable discrete mathematics as well as applications of combinatorial mathematics to informatics and various areas of science and technology. Contributions presented to the journal can be research papers, short notes, surveys, and possibly research problems. The "Communications" section will be devoted to the fastest possible publication of recent research results that are checked and recommended for publication by a member of the Editorial Board. The journal will also publish a limited number of book announcements as well as proceedings of conferences. These proceedings will be fully refereed and adhere to the normal standards of the journal. Potential authors are advised to view the journal and the open calls-for-papers of special issues before submitting their manuscripts. Only high-quality, original work that is within the scope of the journal or the targeted special issue will be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信