给定阶数和大小的图的基于度的加权邻接矩阵的极谱半径

IF 1 3区 数学 Q3 MATHEMATICS, APPLIED
Chenghao Shen, Haiying Shan
{"title":"给定阶数和大小的图的基于度的加权邻接矩阵的极谱半径","authors":"Chenghao Shen,&nbsp;Haiying Shan","doi":"10.1016/j.dam.2024.10.025","DOIUrl":null,"url":null,"abstract":"<div><div>The <span><math><mi>f</mi></math></span>-adjacency matrix is a type of edge-weighted adjacency matrix, whose weight of an edge <span><math><mrow><mi>i</mi><mi>j</mi></mrow></math></span> is <span><math><mrow><mi>f</mi><mrow><mo>(</mo><msub><mrow><mi>d</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>,</mo><msub><mrow><mi>d</mi></mrow><mrow><mi>j</mi></mrow></msub><mo>)</mo></mrow></mrow></math></span>, where <span><math><mi>f</mi></math></span> is a real symmetric function and <span><math><mrow><msub><mrow><mi>d</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>,</mo><msub><mrow><mi>d</mi></mrow><mrow><mi>j</mi></mrow></msub></mrow></math></span> are the degrees of vertex <span><math><mi>i</mi></math></span> and vertex <span><math><mi>j</mi></math></span>. The <span><math><mi>f</mi></math></span>-spectral radius of a graph is the spectral radius of its <span><math><mi>f</mi></math></span>-adjacency matrix. In this paper, the effect of subdividing an edge on <span><math><mi>f</mi></math></span>-spectral radius is discussed. Some necessary conditions of the extremal graph with given order and size are derived. As an application of these results, we obtain the bicyclic graph(s) with the smallest <span><math><mi>f</mi></math></span>-spectral radius for fixed order <span><math><mrow><mi>n</mi><mo>≥</mo><mn>8</mn></mrow></math></span> by applying generalized Lu–Man method.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"361 ","pages":"Pages 315-323"},"PeriodicalIF":1.0000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Extremal spectral radius of degree-based weighted adjacency matrices of graphs with given order and size\",\"authors\":\"Chenghao Shen,&nbsp;Haiying Shan\",\"doi\":\"10.1016/j.dam.2024.10.025\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The <span><math><mi>f</mi></math></span>-adjacency matrix is a type of edge-weighted adjacency matrix, whose weight of an edge <span><math><mrow><mi>i</mi><mi>j</mi></mrow></math></span> is <span><math><mrow><mi>f</mi><mrow><mo>(</mo><msub><mrow><mi>d</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>,</mo><msub><mrow><mi>d</mi></mrow><mrow><mi>j</mi></mrow></msub><mo>)</mo></mrow></mrow></math></span>, where <span><math><mi>f</mi></math></span> is a real symmetric function and <span><math><mrow><msub><mrow><mi>d</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>,</mo><msub><mrow><mi>d</mi></mrow><mrow><mi>j</mi></mrow></msub></mrow></math></span> are the degrees of vertex <span><math><mi>i</mi></math></span> and vertex <span><math><mi>j</mi></math></span>. The <span><math><mi>f</mi></math></span>-spectral radius of a graph is the spectral radius of its <span><math><mi>f</mi></math></span>-adjacency matrix. In this paper, the effect of subdividing an edge on <span><math><mi>f</mi></math></span>-spectral radius is discussed. Some necessary conditions of the extremal graph with given order and size are derived. As an application of these results, we obtain the bicyclic graph(s) with the smallest <span><math><mi>f</mi></math></span>-spectral radius for fixed order <span><math><mrow><mi>n</mi><mo>≥</mo><mn>8</mn></mrow></math></span> by applying generalized Lu–Man method.</div></div>\",\"PeriodicalId\":50573,\"journal\":{\"name\":\"Discrete Applied Mathematics\",\"volume\":\"361 \",\"pages\":\"Pages 315-323\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0166218X24004608\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166218X24004608","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

f-adjacency 矩阵是一种边缘加权邻接矩阵,其边缘 ij 的权重为 f(di,dj),其中 f 是实对称函数,di,dj 是顶点 i 和顶点 j 的度数。本文讨论了细分边对 f 谱半径的影响。本文推导了具有给定阶数和大小的极值图的一些必要条件。作为这些结果的应用,我们应用广义鲁曼法得到了固定阶数 n≥8 时 f 谱半径最小的双环图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Extremal spectral radius of degree-based weighted adjacency matrices of graphs with given order and size
The f-adjacency matrix is a type of edge-weighted adjacency matrix, whose weight of an edge ij is f(di,dj), where f is a real symmetric function and di,dj are the degrees of vertex i and vertex j. The f-spectral radius of a graph is the spectral radius of its f-adjacency matrix. In this paper, the effect of subdividing an edge on f-spectral radius is discussed. Some necessary conditions of the extremal graph with given order and size are derived. As an application of these results, we obtain the bicyclic graph(s) with the smallest f-spectral radius for fixed order n8 by applying generalized Lu–Man method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Discrete Applied Mathematics
Discrete Applied Mathematics 数学-应用数学
CiteScore
2.30
自引率
9.10%
发文量
422
审稿时长
4.5 months
期刊介绍: The aim of Discrete Applied Mathematics is to bring together research papers in different areas of algorithmic and applicable discrete mathematics as well as applications of combinatorial mathematics to informatics and various areas of science and technology. Contributions presented to the journal can be research papers, short notes, surveys, and possibly research problems. The "Communications" section will be devoted to the fastest possible publication of recent research results that are checked and recommended for publication by a member of the Editorial Board. The journal will also publish a limited number of book announcements as well as proceedings of conferences. These proceedings will be fully refereed and adhere to the normal standards of the journal. Potential authors are advised to view the journal and the open calls-for-papers of special issues before submitting their manuscripts. Only high-quality, original work that is within the scope of the journal or the targeted special issue will be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信