自监督混合神经网络实现用于癌症研究的定量生物发光断层成像。

IF 2.9 2区 医学 Q2 BIOCHEMICAL RESEARCH METHODS
Biomedical optics express Pub Date : 2024-10-07 eCollection Date: 2024-11-01 DOI:10.1364/BOE.531573
Beichuan Deng, Zhishen Tong, Xiangkun Xu, Hamid Dehghani, Ken Kang-Hsin Wang
{"title":"自监督混合神经网络实现用于癌症研究的定量生物发光断层成像。","authors":"Beichuan Deng, Zhishen Tong, Xiangkun Xu, Hamid Dehghani, Ken Kang-Hsin Wang","doi":"10.1364/BOE.531573","DOIUrl":null,"url":null,"abstract":"<p><p>Bioluminescence tomography (BLT) improves upon commonly-used 2D bioluminescence imaging by reconstructing 3D distributions of bioluminescence activity within biological tissue, allowing tumor localization and volume estimation-critical for cancer therapy development. Conventional model-based BLT is computationally challenging due to the ill-posed nature of the problem and data noise. We introduce a self-supervised hybrid neural network (SHyNN) that integrates the strengths of both conventional model-based methods and machine learning (ML) techniques to address these challenges. The network structure and converging path of SHyNN are designed to mitigate the effects of ill-posedness for achieving accurate and robust solutions. Through simulated and in vivo data on different disease sites, it is demonstrated to outperform the conventional reconstruction approach, particularly under high noise, in tumor localization, volume estimation, and multi-tumor differentiation, highlighting the potential towards quantitative BLT for cancer research.</p>","PeriodicalId":8969,"journal":{"name":"Biomedical optics express","volume":"15 11","pages":"6211-6227"},"PeriodicalIF":2.9000,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11563333/pdf/","citationCount":"0","resultStr":"{\"title\":\"Self-supervised hybrid neural network to achieve quantitative bioluminescence tomography for cancer research.\",\"authors\":\"Beichuan Deng, Zhishen Tong, Xiangkun Xu, Hamid Dehghani, Ken Kang-Hsin Wang\",\"doi\":\"10.1364/BOE.531573\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Bioluminescence tomography (BLT) improves upon commonly-used 2D bioluminescence imaging by reconstructing 3D distributions of bioluminescence activity within biological tissue, allowing tumor localization and volume estimation-critical for cancer therapy development. Conventional model-based BLT is computationally challenging due to the ill-posed nature of the problem and data noise. We introduce a self-supervised hybrid neural network (SHyNN) that integrates the strengths of both conventional model-based methods and machine learning (ML) techniques to address these challenges. The network structure and converging path of SHyNN are designed to mitigate the effects of ill-posedness for achieving accurate and robust solutions. Through simulated and in vivo data on different disease sites, it is demonstrated to outperform the conventional reconstruction approach, particularly under high noise, in tumor localization, volume estimation, and multi-tumor differentiation, highlighting the potential towards quantitative BLT for cancer research.</p>\",\"PeriodicalId\":8969,\"journal\":{\"name\":\"Biomedical optics express\",\"volume\":\"15 11\",\"pages\":\"6211-6227\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11563333/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomedical optics express\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1364/BOE.531573\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/11/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical optics express","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1364/BOE.531573","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

生物发光层析成像(BLT)通过重建生物组织内生物发光活性的三维分布,改进了常用的二维生物发光成像技术,从而实现肿瘤定位和体积估算--这对癌症治疗的开发至关重要。由于问题的不确定性和数据噪声,传统的基于模型的 BLT 在计算上具有挑战性。我们介绍了一种自监督混合神经网络(SHyNN),它集成了传统基于模型的方法和机器学习(ML)技术的优势,以应对这些挑战。SHyNN 的网络结构和收敛路径旨在减轻假定性的影响,从而获得准确、稳健的解决方案。通过不同疾病部位的模拟和活体数据,证明它在肿瘤定位、体积估计和多肿瘤分化方面优于传统的重建方法,尤其是在高噪声条件下,突出了定量 BLT 在癌症研究中的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Self-supervised hybrid neural network to achieve quantitative bioluminescence tomography for cancer research.

Bioluminescence tomography (BLT) improves upon commonly-used 2D bioluminescence imaging by reconstructing 3D distributions of bioluminescence activity within biological tissue, allowing tumor localization and volume estimation-critical for cancer therapy development. Conventional model-based BLT is computationally challenging due to the ill-posed nature of the problem and data noise. We introduce a self-supervised hybrid neural network (SHyNN) that integrates the strengths of both conventional model-based methods and machine learning (ML) techniques to address these challenges. The network structure and converging path of SHyNN are designed to mitigate the effects of ill-posedness for achieving accurate and robust solutions. Through simulated and in vivo data on different disease sites, it is demonstrated to outperform the conventional reconstruction approach, particularly under high noise, in tumor localization, volume estimation, and multi-tumor differentiation, highlighting the potential towards quantitative BLT for cancer research.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biomedical optics express
Biomedical optics express BIOCHEMICAL RESEARCH METHODS-OPTICS
CiteScore
6.80
自引率
11.80%
发文量
633
审稿时长
1 months
期刊介绍: The journal''s scope encompasses fundamental research, technology development, biomedical studies and clinical applications. BOEx focuses on the leading edge topics in the field, including: Tissue optics and spectroscopy Novel microscopies Optical coherence tomography Diffuse and fluorescence tomography Photoacoustic and multimodal imaging Molecular imaging and therapies Nanophotonic biosensing Optical biophysics/photobiology Microfluidic optical devices Vision research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信