阐明城市固体废物中塑料和纸张共热解过程中的协同效应:热行为和产品特性

IF 9.7 1区 环境科学与生态学 Q1 AGRICULTURAL ENGINEERING
Zichao Hu, Longfei Tang, Peipei Gao, Bin Wang, Chang Zhang, Yue Sheng, Weitong Pan, Lu Ding, Xueli Chen, Fuchen Wang
{"title":"阐明城市固体废物中塑料和纸张共热解过程中的协同效应:热行为和产品特性","authors":"Zichao Hu, Longfei Tang, Peipei Gao, Bin Wang, Chang Zhang, Yue Sheng, Weitong Pan, Lu Ding, Xueli Chen, Fuchen Wang","doi":"10.1016/j.biortech.2024.131831","DOIUrl":null,"url":null,"abstract":"<p><p>Plastics and paper are common components of municipal solid waste (MSW), making an in-depth understanding of their interactions essential for MSW thermal conversion. In this study, the co-pyrolysis behavior of plastic and paper was investigated. Firstly, the thermal decomposition characteristics were analyzed. Secondly, the pyrolytic behavior was elucidated in a fixed-bed reactor. Thirdly, the impact of plastic melting on co-pyrolysis was clarified. Results indicated that the thermal decomposition was accelerated between 250 °C and 283 °C, while temperatures above 400 °C resulted in inhibition. During fixed-bed pyrolysis, char yields (70.7-16.9 %) were increased by 4.0 %-12.7 %. This increase was mainly due to plastic melting, which contributed 8.6 % and increased aliphatic carbon content. Besides, PVC and PET exhibited a broader melting range > 500 °C. Bio-oil yields (25.5-70.6 %) were reduced by 3.4 %-12.4 %, primarily affecting aliphatic compositions. Gas yields (3.8-6.5 %) were reduced < 400 °C but increased with temperature, involving primarily H<sub>2</sub>, CH<sub>4</sub>, C<sub>2</sub>H<sub>4</sub>, and C<sub>2</sub>H<sub>6</sub>.</p>","PeriodicalId":258,"journal":{"name":"Bioresource Technology","volume":" ","pages":"131831"},"PeriodicalIF":9.7000,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Elucidating synergistic effects during co-pyrolysis of plastics and paper in municipal solid waste: Thermal behavior and product characteristics.\",\"authors\":\"Zichao Hu, Longfei Tang, Peipei Gao, Bin Wang, Chang Zhang, Yue Sheng, Weitong Pan, Lu Ding, Xueli Chen, Fuchen Wang\",\"doi\":\"10.1016/j.biortech.2024.131831\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Plastics and paper are common components of municipal solid waste (MSW), making an in-depth understanding of their interactions essential for MSW thermal conversion. In this study, the co-pyrolysis behavior of plastic and paper was investigated. Firstly, the thermal decomposition characteristics were analyzed. Secondly, the pyrolytic behavior was elucidated in a fixed-bed reactor. Thirdly, the impact of plastic melting on co-pyrolysis was clarified. Results indicated that the thermal decomposition was accelerated between 250 °C and 283 °C, while temperatures above 400 °C resulted in inhibition. During fixed-bed pyrolysis, char yields (70.7-16.9 %) were increased by 4.0 %-12.7 %. This increase was mainly due to plastic melting, which contributed 8.6 % and increased aliphatic carbon content. Besides, PVC and PET exhibited a broader melting range > 500 °C. Bio-oil yields (25.5-70.6 %) were reduced by 3.4 %-12.4 %, primarily affecting aliphatic compositions. Gas yields (3.8-6.5 %) were reduced < 400 °C but increased with temperature, involving primarily H<sub>2</sub>, CH<sub>4</sub>, C<sub>2</sub>H<sub>4</sub>, and C<sub>2</sub>H<sub>6</sub>.</p>\",\"PeriodicalId\":258,\"journal\":{\"name\":\"Bioresource Technology\",\"volume\":\" \",\"pages\":\"131831\"},\"PeriodicalIF\":9.7000,\"publicationDate\":\"2024-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioresource Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1016/j.biortech.2024.131831\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRICULTURAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioresource Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.biortech.2024.131831","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURAL ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

塑料和纸张是城市固体废弃物(MSW)的常见成分,因此深入了解它们之间的相互作用对于城市固体废弃物的热转化至关重要。本研究对塑料和纸张的共热解行为进行了研究。首先,分析了热分解特性。其次,阐明了固定床反应器中的热解行为。第三,阐明了塑料熔化对共热解的影响。结果表明,热分解在 250 ℃ 至 283 ℃ 之间加速,而温度超过 400 ℃ 则会受到抑制。在固定床热解过程中,炭产量(70.7%-16.9%)增加了 4.0%-12.7%。增加的主要原因是塑料熔化(占 8.6%)和脂肪族碳含量的增加。此外,PVC 和 PET 的熔化范围大于 500 °C。生物油产量(25.5-70.6%)降低了 3.4%-12.4%,主要影响脂肪族成分。气体产量(3.8%-6.5%)减少了 2、CH4、C2H4 和 C2H6。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Elucidating synergistic effects during co-pyrolysis of plastics and paper in municipal solid waste: Thermal behavior and product characteristics.

Plastics and paper are common components of municipal solid waste (MSW), making an in-depth understanding of their interactions essential for MSW thermal conversion. In this study, the co-pyrolysis behavior of plastic and paper was investigated. Firstly, the thermal decomposition characteristics were analyzed. Secondly, the pyrolytic behavior was elucidated in a fixed-bed reactor. Thirdly, the impact of plastic melting on co-pyrolysis was clarified. Results indicated that the thermal decomposition was accelerated between 250 °C and 283 °C, while temperatures above 400 °C resulted in inhibition. During fixed-bed pyrolysis, char yields (70.7-16.9 %) were increased by 4.0 %-12.7 %. This increase was mainly due to plastic melting, which contributed 8.6 % and increased aliphatic carbon content. Besides, PVC and PET exhibited a broader melting range > 500 °C. Bio-oil yields (25.5-70.6 %) were reduced by 3.4 %-12.4 %, primarily affecting aliphatic compositions. Gas yields (3.8-6.5 %) were reduced < 400 °C but increased with temperature, involving primarily H2, CH4, C2H4, and C2H6.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Bioresource Technology
Bioresource Technology 工程技术-能源与燃料
CiteScore
20.80
自引率
19.30%
发文量
2013
审稿时长
12 days
期刊介绍: Bioresource Technology publishes original articles, review articles, case studies, and short communications covering the fundamentals, applications, and management of bioresource technology. The journal seeks to advance and disseminate knowledge across various areas related to biomass, biological waste treatment, bioenergy, biotransformations, bioresource systems analysis, and associated conversion or production technologies. Topics include: • Biofuels: liquid and gaseous biofuels production, modeling and economics • Bioprocesses and bioproducts: biocatalysis and fermentations • Biomass and feedstocks utilization: bioconversion of agro-industrial residues • Environmental protection: biological waste treatment • Thermochemical conversion of biomass: combustion, pyrolysis, gasification, catalysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信