Parameswar Dalai , Dhruvi Shah , Jigna Shah , Kinal Soni , Aditya Mohanty , Kavya Thanki , Heena Dave , Reena Agrawal-Rajput
{"title":"CD39 和 CD73 的拮抗剂可增强强力霉素的重新定位作用,从而诱导有效的抗肿瘤免疫反应。","authors":"Parameswar Dalai , Dhruvi Shah , Jigna Shah , Kinal Soni , Aditya Mohanty , Kavya Thanki , Heena Dave , Reena Agrawal-Rajput","doi":"10.1016/j.cellsig.2024.111507","DOIUrl":null,"url":null,"abstract":"<div><div>Studies have reported that cellular metabolism at the tumor-immune microenvironment (TiME) serves as a critical checkpoint and perturbs/supports anti-cancer immunity. Extra cellular ATP (eATP) may mediate anti-cancer immune response; however, its catabolism by ectonucleotidase generates immunosuppressive adenosine. In the presented work, we have tried to repurpose doxycycline with or without an antagonist of ectonucleotidase for mitigating ATP metabolism and immunosuppression. In this methodology eATP and adenosine levels were quantified. Bone marrow-derived M1 and M2 polarized macrophages were maintained in tumor mimicking condition (TMC). Total/CD4<sup>+</sup>Tcells were co-cultured with macrophages to understand the impact of doxycycline and/or antagonist of ectonucleotidase on T cell/subset differentiation. Preclinical efficacy of doxycycline and/or ectonucleotidase antagonist and their synergy was scored in 4T1-induced breast carcinoma. We found that Doxycycline manipulated macrophage polarization by decreasing the frequency of CD206<sup>+</sup>M2 macrophages, which resulted in enhanced CD4<sup>+</sup> directed CD8<sup>+</sup> T cell response. Doxycycline alleviated the expression of CD39 and CD73, rescuing ATP catabolism. Doxycycline delayed tumor growth by enhancing F4/80<sup>+</sup> CD86<sup>+</sup> M1 macrophages and subsequently anti-tumor Tbet<sup>+</sup> CD4<sup>+</sup>Tcells, attenuating the frequency of FOXP3<sup>+</sup> regulatory T cells, which was cooperatively supported by ARL67156 and AMPCP (CD39 and CD73 antagonist).A synergy was observed with ARL67156 and AMPC Pensuring a possibility of using doxycycline alone or in combination with an antagonist of ectonucleotidase to present adenosine-mediated immunosuppression. Subsequently, our finding indicated that prospective usage of doxycycline as a novel metabolic checkpoint blocker (IMB) against ectonucleotidase and may be modified/delivered appropriately as a monotherapy or in combination with antagonists of ectonucleotidases as an IMB.</div></div>","PeriodicalId":9902,"journal":{"name":"Cellular signalling","volume":"125 ","pages":"Article 111507"},"PeriodicalIF":4.4000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Antagonists of CD39 and CD73 potentiate doxycycline repositioning to induce a potent antitumor immune response\",\"authors\":\"Parameswar Dalai , Dhruvi Shah , Jigna Shah , Kinal Soni , Aditya Mohanty , Kavya Thanki , Heena Dave , Reena Agrawal-Rajput\",\"doi\":\"10.1016/j.cellsig.2024.111507\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Studies have reported that cellular metabolism at the tumor-immune microenvironment (TiME) serves as a critical checkpoint and perturbs/supports anti-cancer immunity. Extra cellular ATP (eATP) may mediate anti-cancer immune response; however, its catabolism by ectonucleotidase generates immunosuppressive adenosine. In the presented work, we have tried to repurpose doxycycline with or without an antagonist of ectonucleotidase for mitigating ATP metabolism and immunosuppression. In this methodology eATP and adenosine levels were quantified. Bone marrow-derived M1 and M2 polarized macrophages were maintained in tumor mimicking condition (TMC). Total/CD4<sup>+</sup>Tcells were co-cultured with macrophages to understand the impact of doxycycline and/or antagonist of ectonucleotidase on T cell/subset differentiation. Preclinical efficacy of doxycycline and/or ectonucleotidase antagonist and their synergy was scored in 4T1-induced breast carcinoma. We found that Doxycycline manipulated macrophage polarization by decreasing the frequency of CD206<sup>+</sup>M2 macrophages, which resulted in enhanced CD4<sup>+</sup> directed CD8<sup>+</sup> T cell response. Doxycycline alleviated the expression of CD39 and CD73, rescuing ATP catabolism. Doxycycline delayed tumor growth by enhancing F4/80<sup>+</sup> CD86<sup>+</sup> M1 macrophages and subsequently anti-tumor Tbet<sup>+</sup> CD4<sup>+</sup>Tcells, attenuating the frequency of FOXP3<sup>+</sup> regulatory T cells, which was cooperatively supported by ARL67156 and AMPCP (CD39 and CD73 antagonist).A synergy was observed with ARL67156 and AMPC Pensuring a possibility of using doxycycline alone or in combination with an antagonist of ectonucleotidase to present adenosine-mediated immunosuppression. Subsequently, our finding indicated that prospective usage of doxycycline as a novel metabolic checkpoint blocker (IMB) against ectonucleotidase and may be modified/delivered appropriately as a monotherapy or in combination with antagonists of ectonucleotidases as an IMB.</div></div>\",\"PeriodicalId\":9902,\"journal\":{\"name\":\"Cellular signalling\",\"volume\":\"125 \",\"pages\":\"Article 111507\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cellular signalling\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0898656824004820\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cellular signalling","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0898656824004820","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Antagonists of CD39 and CD73 potentiate doxycycline repositioning to induce a potent antitumor immune response
Studies have reported that cellular metabolism at the tumor-immune microenvironment (TiME) serves as a critical checkpoint and perturbs/supports anti-cancer immunity. Extra cellular ATP (eATP) may mediate anti-cancer immune response; however, its catabolism by ectonucleotidase generates immunosuppressive adenosine. In the presented work, we have tried to repurpose doxycycline with or without an antagonist of ectonucleotidase for mitigating ATP metabolism and immunosuppression. In this methodology eATP and adenosine levels were quantified. Bone marrow-derived M1 and M2 polarized macrophages were maintained in tumor mimicking condition (TMC). Total/CD4+Tcells were co-cultured with macrophages to understand the impact of doxycycline and/or antagonist of ectonucleotidase on T cell/subset differentiation. Preclinical efficacy of doxycycline and/or ectonucleotidase antagonist and their synergy was scored in 4T1-induced breast carcinoma. We found that Doxycycline manipulated macrophage polarization by decreasing the frequency of CD206+M2 macrophages, which resulted in enhanced CD4+ directed CD8+ T cell response. Doxycycline alleviated the expression of CD39 and CD73, rescuing ATP catabolism. Doxycycline delayed tumor growth by enhancing F4/80+ CD86+ M1 macrophages and subsequently anti-tumor Tbet+ CD4+Tcells, attenuating the frequency of FOXP3+ regulatory T cells, which was cooperatively supported by ARL67156 and AMPCP (CD39 and CD73 antagonist).A synergy was observed with ARL67156 and AMPC Pensuring a possibility of using doxycycline alone or in combination with an antagonist of ectonucleotidase to present adenosine-mediated immunosuppression. Subsequently, our finding indicated that prospective usage of doxycycline as a novel metabolic checkpoint blocker (IMB) against ectonucleotidase and may be modified/delivered appropriately as a monotherapy or in combination with antagonists of ectonucleotidases as an IMB.
期刊介绍:
Cellular Signalling publishes original research describing fundamental and clinical findings on the mechanisms, actions and structural components of cellular signalling systems in vitro and in vivo.
Cellular Signalling aims at full length research papers defining signalling systems ranging from microorganisms to cells, tissues and higher organisms.