Lun Gao , Kaiyu Guan , Chongya Jiang , Xiaoman Lu , Sheng Wang , Elizabeth A. Ainsworth , Xiaocui Wu , Min Chen
{"title":"纳入环境压力可提高美国大平原牧场和中西部耕地的近红外可见光光合作用估算结果","authors":"Lun Gao , Kaiyu Guan , Chongya Jiang , Xiaoman Lu , Sheng Wang , Elizabeth A. Ainsworth , Xiaocui Wu , Min Chen","doi":"10.1016/j.rse.2024.114516","DOIUrl":null,"url":null,"abstract":"<div><div>Near-infrared reflectance of vegetation multiplied by incoming sunlight (NIRvP) is important for gross primary production (GPP) estimation. While NIRvP is a useful indicator of canopy structure and solar radiation, its association with heat or moisture stress is not fully understood. Thus, this research aimed to explore the impact of air temperature (Ta) and vapor pressure deficit (VPD) on the NIRvP-GPP relationship. Using Moderate Resolution Imaging Spectroradiometer (MODIS) observations, eddy-covariance measurements, and the Parameter–Elevation Regressions on Independent Slopes Model (PRISM) data, we found that NIRvP cannot fully explain the response of plant photosynthesis to Ta and VPD at both seasonal and daily scales. Therefore, we incorporated a polynomial function of Ta and an exponential function of VPD to correct its seasonal response to stress and calibrated the GPP residual via a linear function of Ta and VPD time-varying derivatives to account for its daily response to stress. Leave-one-site-out cross-validation suggested that the improvements relative to its original version were especially noteworthy under stress conditions while less significant when there was no water or heat stress across grasslands and croplands. When compared to six other GPP models, the enhanced NIRvP model consistently outperformed them or performed comparably with the best model in terms of bias, RSME, and coefficient of determinant against measurements in grasslands and croplands. Moreover, we found that parameterizing the fraction of photosynthetically active radiation term using NIRv notably improved the performance of the classic MOD17 and vegetation photosynthesis model, with an average RMSE reduction of 13 % across grasslands and croplands. Overall, this study highlights the need to consider environmental stressors for improved NIRvP-based GPP and shed light on future improvements of LUE models.</div></div>","PeriodicalId":417,"journal":{"name":"Remote Sensing of Environment","volume":"316 ","pages":"Article 114516"},"PeriodicalIF":11.1000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Incorporating environmental stress improves estimation of photosynthesis from NIRvP in US Great Plains pasturelands and Midwest croplands\",\"authors\":\"Lun Gao , Kaiyu Guan , Chongya Jiang , Xiaoman Lu , Sheng Wang , Elizabeth A. Ainsworth , Xiaocui Wu , Min Chen\",\"doi\":\"10.1016/j.rse.2024.114516\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Near-infrared reflectance of vegetation multiplied by incoming sunlight (NIRvP) is important for gross primary production (GPP) estimation. While NIRvP is a useful indicator of canopy structure and solar radiation, its association with heat or moisture stress is not fully understood. Thus, this research aimed to explore the impact of air temperature (Ta) and vapor pressure deficit (VPD) on the NIRvP-GPP relationship. Using Moderate Resolution Imaging Spectroradiometer (MODIS) observations, eddy-covariance measurements, and the Parameter–Elevation Regressions on Independent Slopes Model (PRISM) data, we found that NIRvP cannot fully explain the response of plant photosynthesis to Ta and VPD at both seasonal and daily scales. Therefore, we incorporated a polynomial function of Ta and an exponential function of VPD to correct its seasonal response to stress and calibrated the GPP residual via a linear function of Ta and VPD time-varying derivatives to account for its daily response to stress. Leave-one-site-out cross-validation suggested that the improvements relative to its original version were especially noteworthy under stress conditions while less significant when there was no water or heat stress across grasslands and croplands. When compared to six other GPP models, the enhanced NIRvP model consistently outperformed them or performed comparably with the best model in terms of bias, RSME, and coefficient of determinant against measurements in grasslands and croplands. Moreover, we found that parameterizing the fraction of photosynthetically active radiation term using NIRv notably improved the performance of the classic MOD17 and vegetation photosynthesis model, with an average RMSE reduction of 13 % across grasslands and croplands. Overall, this study highlights the need to consider environmental stressors for improved NIRvP-based GPP and shed light on future improvements of LUE models.</div></div>\",\"PeriodicalId\":417,\"journal\":{\"name\":\"Remote Sensing of Environment\",\"volume\":\"316 \",\"pages\":\"Article 114516\"},\"PeriodicalIF\":11.1000,\"publicationDate\":\"2024-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Remote Sensing of Environment\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S003442572400542X\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Remote Sensing of Environment","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S003442572400542X","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Incorporating environmental stress improves estimation of photosynthesis from NIRvP in US Great Plains pasturelands and Midwest croplands
Near-infrared reflectance of vegetation multiplied by incoming sunlight (NIRvP) is important for gross primary production (GPP) estimation. While NIRvP is a useful indicator of canopy structure and solar radiation, its association with heat or moisture stress is not fully understood. Thus, this research aimed to explore the impact of air temperature (Ta) and vapor pressure deficit (VPD) on the NIRvP-GPP relationship. Using Moderate Resolution Imaging Spectroradiometer (MODIS) observations, eddy-covariance measurements, and the Parameter–Elevation Regressions on Independent Slopes Model (PRISM) data, we found that NIRvP cannot fully explain the response of plant photosynthesis to Ta and VPD at both seasonal and daily scales. Therefore, we incorporated a polynomial function of Ta and an exponential function of VPD to correct its seasonal response to stress and calibrated the GPP residual via a linear function of Ta and VPD time-varying derivatives to account for its daily response to stress. Leave-one-site-out cross-validation suggested that the improvements relative to its original version were especially noteworthy under stress conditions while less significant when there was no water or heat stress across grasslands and croplands. When compared to six other GPP models, the enhanced NIRvP model consistently outperformed them or performed comparably with the best model in terms of bias, RSME, and coefficient of determinant against measurements in grasslands and croplands. Moreover, we found that parameterizing the fraction of photosynthetically active radiation term using NIRv notably improved the performance of the classic MOD17 and vegetation photosynthesis model, with an average RMSE reduction of 13 % across grasslands and croplands. Overall, this study highlights the need to consider environmental stressors for improved NIRvP-based GPP and shed light on future improvements of LUE models.
期刊介绍:
Remote Sensing of Environment (RSE) serves the Earth observation community by disseminating results on the theory, science, applications, and technology that contribute to advancing the field of remote sensing. With a thoroughly interdisciplinary approach, RSE encompasses terrestrial, oceanic, and atmospheric sensing.
The journal emphasizes biophysical and quantitative approaches to remote sensing at local to global scales, covering a diverse range of applications and techniques.
RSE serves as a vital platform for the exchange of knowledge and advancements in the dynamic field of remote sensing.