以白血病和淋巴瘤细胞中的丝裂霉素溴昔布为靶标的线粒体代谢。

IF 8.2 2区 生物学 Q1 CELL BIOLOGY
Laura Schmitt, Karina S Krings, Andre Wolsing, Xabier Buque, Marcel Zimmermann, Hector Flores-Romero, Thomas Lenz, Ilka Lechtenberg, Christoph Peter, Björn Stork, Nicole Teusch, Peter Proksch, Kai Stühler, Ana J García-Sáez, Andreas S Reichert, Patricia Aspichueta, Sanil Bhatia, Sebastian Wesselborg
{"title":"以白血病和淋巴瘤细胞中的丝裂霉素溴昔布为靶标的线粒体代谢。","authors":"Laura Schmitt, Karina S Krings, Andre Wolsing, Xabier Buque, Marcel Zimmermann, Hector Flores-Romero, Thomas Lenz, Ilka Lechtenberg, Christoph Peter, Björn Stork, Nicole Teusch, Peter Proksch, Kai Stühler, Ana J García-Sáez, Andreas S Reichert, Patricia Aspichueta, Sanil Bhatia, Sebastian Wesselborg","doi":"10.1186/s12964-024-01913-2","DOIUrl":null,"url":null,"abstract":"<p><p>Targeting mitochondrial metabolism represents a promising approach for cancer treatment. Here, we investigated the mitotoxic potential of the polybrominated diphenyl ether bromoxib, a natural compound isolated from the marine sponge Dysidea family. We could show that bromoxib comprised strong cytotoxicity in different leukemia and lymphoma cell lines (such as HL60, HPBALL, Jurkat, K562, KOPTK1, MOLT4, SUPB15 and Ramos), but also in solid tumor cell lines (such as glioblastoma cell lines SJ-GBM2 and TP365MG). Bromoxib activated the mitochondrial death pathway as evidenced by the rapid translocation of Bax to the mitochondria and the subsequent mitochondrial release of Smac. Accordingly, bromoxib-induced apoptosis was blocked in caspase 9 deficient Jurkat cells and Jurkat cells overexpressing the antiapoptotic protein Bcl-2. In addition, we could show that bromoxib functioned as an uncoupler of the electron transport chain with similar rapid kinetics as CCCP in terms of dissipation of the mitochondrial membrane potential (ΔΨm), processing of the dynamin-like GTPase OPA1 and subsequent fragmentation of mitochondria. Beyond that, bromoxib strongly abrogated ATP production via glycolysis as well as oxidative phosphorylation (OXPHOS) by targeting electron transport chain complexes II, III, and V (ATP-synthase) in Ramos lymphoma cells. Thus, bromoxib's potential to act on both cytosolic glycolysis and mitochondrial respiration renders it a promising agent for the treatment of leukemia and lymphoma.</p>","PeriodicalId":55268,"journal":{"name":"Cell Communication and Signaling","volume":"22 1","pages":"541"},"PeriodicalIF":8.2000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11558866/pdf/","citationCount":"0","resultStr":"{\"title\":\"Targeting mitochondrial metabolism by the mitotoxin bromoxib in leukemia and lymphoma cells.\",\"authors\":\"Laura Schmitt, Karina S Krings, Andre Wolsing, Xabier Buque, Marcel Zimmermann, Hector Flores-Romero, Thomas Lenz, Ilka Lechtenberg, Christoph Peter, Björn Stork, Nicole Teusch, Peter Proksch, Kai Stühler, Ana J García-Sáez, Andreas S Reichert, Patricia Aspichueta, Sanil Bhatia, Sebastian Wesselborg\",\"doi\":\"10.1186/s12964-024-01913-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Targeting mitochondrial metabolism represents a promising approach for cancer treatment. Here, we investigated the mitotoxic potential of the polybrominated diphenyl ether bromoxib, a natural compound isolated from the marine sponge Dysidea family. We could show that bromoxib comprised strong cytotoxicity in different leukemia and lymphoma cell lines (such as HL60, HPBALL, Jurkat, K562, KOPTK1, MOLT4, SUPB15 and Ramos), but also in solid tumor cell lines (such as glioblastoma cell lines SJ-GBM2 and TP365MG). Bromoxib activated the mitochondrial death pathway as evidenced by the rapid translocation of Bax to the mitochondria and the subsequent mitochondrial release of Smac. Accordingly, bromoxib-induced apoptosis was blocked in caspase 9 deficient Jurkat cells and Jurkat cells overexpressing the antiapoptotic protein Bcl-2. In addition, we could show that bromoxib functioned as an uncoupler of the electron transport chain with similar rapid kinetics as CCCP in terms of dissipation of the mitochondrial membrane potential (ΔΨm), processing of the dynamin-like GTPase OPA1 and subsequent fragmentation of mitochondria. Beyond that, bromoxib strongly abrogated ATP production via glycolysis as well as oxidative phosphorylation (OXPHOS) by targeting electron transport chain complexes II, III, and V (ATP-synthase) in Ramos lymphoma cells. Thus, bromoxib's potential to act on both cytosolic glycolysis and mitochondrial respiration renders it a promising agent for the treatment of leukemia and lymphoma.</p>\",\"PeriodicalId\":55268,\"journal\":{\"name\":\"Cell Communication and Signaling\",\"volume\":\"22 1\",\"pages\":\"541\"},\"PeriodicalIF\":8.2000,\"publicationDate\":\"2024-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11558866/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell Communication and Signaling\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s12964-024-01913-2\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Communication and Signaling","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12964-024-01913-2","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

靶向线粒体代谢是一种很有前景的癌症治疗方法。在这里,我们研究了多溴联苯醚溴昔布的有丝分裂毒性潜力,溴昔布是从海洋海绵 Dysidea 家族中分离出来的一种天然化合物。我们发现溴昔布在不同的白血病和淋巴瘤细胞系(如 HL60、HPBALL、Jurkat、K562、KOPTK1、MOLT4、SUPB15 和 Ramos)以及实体瘤细胞系(如胶质母细胞瘤细胞系 SJ-GBM2 和 TP365MG)中都具有很强的细胞毒性。Bax 快速转位到线粒体,随后线粒体释放 Smac,这证明溴昔布激活了线粒体死亡途径。因此,在缺乏 caspase 9 的 Jurkat 细胞和过量表达抗凋亡蛋白 Bcl-2 的 Jurkat 细胞中,溴溪布诱导的细胞凋亡被阻断。此外,我们还发现,溴溪布作为电子传递链的解耦剂,在线粒体膜电位耗散(ΔΨm)、动态蛋白样 GTP 酶 OPA1 的处理以及随后的线粒体破碎等方面的快速动力学与 CCCP 相似。除此之外,溴溪布还通过靶向拉莫斯淋巴瘤细胞中的电子传递链复合物 II、III 和 V(ATP 合成酶),强烈抑制糖酵解和氧化磷酸化(OXPHOS)产生 ATP。因此,溴昔布同时作用于细胞糖酵解和线粒体呼吸的潜力使其成为治疗白血病和淋巴瘤的一种有前途的药物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Targeting mitochondrial metabolism by the mitotoxin bromoxib in leukemia and lymphoma cells.

Targeting mitochondrial metabolism represents a promising approach for cancer treatment. Here, we investigated the mitotoxic potential of the polybrominated diphenyl ether bromoxib, a natural compound isolated from the marine sponge Dysidea family. We could show that bromoxib comprised strong cytotoxicity in different leukemia and lymphoma cell lines (such as HL60, HPBALL, Jurkat, K562, KOPTK1, MOLT4, SUPB15 and Ramos), but also in solid tumor cell lines (such as glioblastoma cell lines SJ-GBM2 and TP365MG). Bromoxib activated the mitochondrial death pathway as evidenced by the rapid translocation of Bax to the mitochondria and the subsequent mitochondrial release of Smac. Accordingly, bromoxib-induced apoptosis was blocked in caspase 9 deficient Jurkat cells and Jurkat cells overexpressing the antiapoptotic protein Bcl-2. In addition, we could show that bromoxib functioned as an uncoupler of the electron transport chain with similar rapid kinetics as CCCP in terms of dissipation of the mitochondrial membrane potential (ΔΨm), processing of the dynamin-like GTPase OPA1 and subsequent fragmentation of mitochondria. Beyond that, bromoxib strongly abrogated ATP production via glycolysis as well as oxidative phosphorylation (OXPHOS) by targeting electron transport chain complexes II, III, and V (ATP-synthase) in Ramos lymphoma cells. Thus, bromoxib's potential to act on both cytosolic glycolysis and mitochondrial respiration renders it a promising agent for the treatment of leukemia and lymphoma.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
11.00
自引率
0.00%
发文量
180
期刊介绍: Cell Communication and Signaling (CCS) is a peer-reviewed, open-access scientific journal that focuses on cellular signaling pathways in both normal and pathological conditions. It publishes original research, reviews, and commentaries, welcoming studies that utilize molecular, morphological, biochemical, structural, and cell biology approaches. CCS also encourages interdisciplinary work and innovative models, including in silico, in vitro, and in vivo approaches, to facilitate investigations of cell signaling pathways, networks, and behavior. Starting from January 2019, CCS is proud to announce its affiliation with the International Cell Death Society. The journal now encourages submissions covering all aspects of cell death, including apoptotic and non-apoptotic mechanisms, cell death in model systems, autophagy, clearance of dying cells, and the immunological and pathological consequences of dying cells in the tissue microenvironment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信