Yesuf Siraj, Domenico Aprile, Nicola Alessio, Gianfranco Peluso, Giovanni Di Bernardo, Umberto Galderisi
{"title":"IGFBP7是衰老相关分泌表型(SASP)的一个关键组成部分,它通过调节胰岛素、IGF和激活素A途径诱导健康细胞衰老。","authors":"Yesuf Siraj, Domenico Aprile, Nicola Alessio, Gianfranco Peluso, Giovanni Di Bernardo, Umberto Galderisi","doi":"10.1186/s12964-024-01921-2","DOIUrl":null,"url":null,"abstract":"<p><p>Senescent cells exert their effects through the release of various factors, collectively referred to as the senescence-associated secretory phenotype (SASP). The SASP can induce senescence in healthy cells (secondary senescence), modulate immune system function, reshape the extracellular matrix, and facilitate cancer progression.Among SASP components, certain factors act as key regulators in the induction of secondary senescence. In this study, we evaluated the role of IGFBP7, a crucial SASP component. Our results demonstrated that ROS-prostaglandin signaling is involved in the release of IGFBP7. Furthermore, neutralizing antibodies targeting IGFBP7 attenuated the SASP's pro-senescence activity. Cells incubated with IGFBP7 also entered a state of senescence.The senescence induced by IGFBP7 appears to be mediated through three primary pathways. First, IGFBP7 can bind to insulin, thereby inhibiting its anti-senescence and pro-growth effects. In addition to this inhibitory effect on the insulin pathway, IGFBP7 may enhance IGFII pro-senescence signaling by promoting its interaction with IGF2R while blocking IGF1R. These activities are dependent on ERK and AKT signaling pathways. Finally, IGFBP7 and Activin A, both of which can induce cellular senescence, appear to regulate and inhibit each other, suggesting a compensatory mechanism to prevent excessive senescence. Notably, our preliminary data indicate that IGFBP7, in addition to blocking Activin A, may interact with its receptors and induce senescence via SMAD pathways.Our findings highlight that IGFBP7, along with other members of the IGFBP family, plays a pivotal role in senescence-related signaling pathways. Therefore, IGFBP7 may serve as a potential target for anti-aging strategies aimed at reducing the burden of senescence on tissues and organs.</p>","PeriodicalId":55268,"journal":{"name":"Cell Communication and Signaling","volume":"22 1","pages":"540"},"PeriodicalIF":8.2000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11558980/pdf/","citationCount":"0","resultStr":"{\"title\":\"IGFBP7 is a key component of the senescence-associated secretory phenotype (SASP) that induces senescence in healthy cells by modulating the insulin, IGF, and activin A pathways.\",\"authors\":\"Yesuf Siraj, Domenico Aprile, Nicola Alessio, Gianfranco Peluso, Giovanni Di Bernardo, Umberto Galderisi\",\"doi\":\"10.1186/s12964-024-01921-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Senescent cells exert their effects through the release of various factors, collectively referred to as the senescence-associated secretory phenotype (SASP). The SASP can induce senescence in healthy cells (secondary senescence), modulate immune system function, reshape the extracellular matrix, and facilitate cancer progression.Among SASP components, certain factors act as key regulators in the induction of secondary senescence. In this study, we evaluated the role of IGFBP7, a crucial SASP component. Our results demonstrated that ROS-prostaglandin signaling is involved in the release of IGFBP7. Furthermore, neutralizing antibodies targeting IGFBP7 attenuated the SASP's pro-senescence activity. Cells incubated with IGFBP7 also entered a state of senescence.The senescence induced by IGFBP7 appears to be mediated through three primary pathways. First, IGFBP7 can bind to insulin, thereby inhibiting its anti-senescence and pro-growth effects. In addition to this inhibitory effect on the insulin pathway, IGFBP7 may enhance IGFII pro-senescence signaling by promoting its interaction with IGF2R while blocking IGF1R. These activities are dependent on ERK and AKT signaling pathways. Finally, IGFBP7 and Activin A, both of which can induce cellular senescence, appear to regulate and inhibit each other, suggesting a compensatory mechanism to prevent excessive senescence. Notably, our preliminary data indicate that IGFBP7, in addition to blocking Activin A, may interact with its receptors and induce senescence via SMAD pathways.Our findings highlight that IGFBP7, along with other members of the IGFBP family, plays a pivotal role in senescence-related signaling pathways. Therefore, IGFBP7 may serve as a potential target for anti-aging strategies aimed at reducing the burden of senescence on tissues and organs.</p>\",\"PeriodicalId\":55268,\"journal\":{\"name\":\"Cell Communication and Signaling\",\"volume\":\"22 1\",\"pages\":\"540\"},\"PeriodicalIF\":8.2000,\"publicationDate\":\"2024-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11558980/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell Communication and Signaling\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s12964-024-01921-2\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Communication and Signaling","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12964-024-01921-2","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
IGFBP7 is a key component of the senescence-associated secretory phenotype (SASP) that induces senescence in healthy cells by modulating the insulin, IGF, and activin A pathways.
Senescent cells exert their effects through the release of various factors, collectively referred to as the senescence-associated secretory phenotype (SASP). The SASP can induce senescence in healthy cells (secondary senescence), modulate immune system function, reshape the extracellular matrix, and facilitate cancer progression.Among SASP components, certain factors act as key regulators in the induction of secondary senescence. In this study, we evaluated the role of IGFBP7, a crucial SASP component. Our results demonstrated that ROS-prostaglandin signaling is involved in the release of IGFBP7. Furthermore, neutralizing antibodies targeting IGFBP7 attenuated the SASP's pro-senescence activity. Cells incubated with IGFBP7 also entered a state of senescence.The senescence induced by IGFBP7 appears to be mediated through three primary pathways. First, IGFBP7 can bind to insulin, thereby inhibiting its anti-senescence and pro-growth effects. In addition to this inhibitory effect on the insulin pathway, IGFBP7 may enhance IGFII pro-senescence signaling by promoting its interaction with IGF2R while blocking IGF1R. These activities are dependent on ERK and AKT signaling pathways. Finally, IGFBP7 and Activin A, both of which can induce cellular senescence, appear to regulate and inhibit each other, suggesting a compensatory mechanism to prevent excessive senescence. Notably, our preliminary data indicate that IGFBP7, in addition to blocking Activin A, may interact with its receptors and induce senescence via SMAD pathways.Our findings highlight that IGFBP7, along with other members of the IGFBP family, plays a pivotal role in senescence-related signaling pathways. Therefore, IGFBP7 may serve as a potential target for anti-aging strategies aimed at reducing the burden of senescence on tissues and organs.
期刊介绍:
Cell Communication and Signaling (CCS) is a peer-reviewed, open-access scientific journal that focuses on cellular signaling pathways in both normal and pathological conditions. It publishes original research, reviews, and commentaries, welcoming studies that utilize molecular, morphological, biochemical, structural, and cell biology approaches. CCS also encourages interdisciplinary work and innovative models, including in silico, in vitro, and in vivo approaches, to facilitate investigations of cell signaling pathways, networks, and behavior.
Starting from January 2019, CCS is proud to announce its affiliation with the International Cell Death Society. The journal now encourages submissions covering all aspects of cell death, including apoptotic and non-apoptotic mechanisms, cell death in model systems, autophagy, clearance of dying cells, and the immunological and pathological consequences of dying cells in the tissue microenvironment.