{"title":"DeployFusion:面向边缘设备的可部署单目三维物体检测与多传感器信息融合BEV。","authors":"Fei Huang, Shengshu Liu, Guangqian Zhang, Bingsen Hao, Yangkai Xiang, Kun Yuan","doi":"10.3390/s24217007","DOIUrl":null,"url":null,"abstract":"<p><p>To address the challenges of suboptimal remote detection and significant computational burden in existing multi-sensor information fusion 3D object detection methods, a novel approach based on Bird's-Eye View (BEV) is proposed. This method utilizes an enhanced lightweight EdgeNeXt feature extraction network, incorporating residual branches to address network degradation caused by the excessive depth of STDA encoding blocks. Meantime, deformable convolution is used to expand the receptive field and reduce computational complexity. The feature fusion module constructs a two-stage fusion network to optimize the fusion and alignment of multi-sensor features. This network aligns image features to supplement environmental information with point cloud features, thereby obtaining the final BEV features. Additionally, a Transformer decoder that emphasizes global spatial cues is employed to process the BEV feature sequence, enabling precise detection of distant small objects. Experimental results demonstrate that this method surpasses the baseline network, with improvements of 4.5% in the NuScenes detection score and 5.5% in average precision for detection objects. Finally, the model is converted and accelerated using TensorRT tools for deployment on mobile devices, achieving an inference time of 138 ms per frame on the Jetson Orin NX embedded platform, thus enabling real-time 3D object detection.</p>","PeriodicalId":21698,"journal":{"name":"Sensors","volume":"24 21","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11548664/pdf/","citationCount":"0","resultStr":"{\"title\":\"DeployFusion: A Deployable Monocular 3D Object Detection with Multi-Sensor Information Fusion in BEV for Edge Devices.\",\"authors\":\"Fei Huang, Shengshu Liu, Guangqian Zhang, Bingsen Hao, Yangkai Xiang, Kun Yuan\",\"doi\":\"10.3390/s24217007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>To address the challenges of suboptimal remote detection and significant computational burden in existing multi-sensor information fusion 3D object detection methods, a novel approach based on Bird's-Eye View (BEV) is proposed. This method utilizes an enhanced lightweight EdgeNeXt feature extraction network, incorporating residual branches to address network degradation caused by the excessive depth of STDA encoding blocks. Meantime, deformable convolution is used to expand the receptive field and reduce computational complexity. The feature fusion module constructs a two-stage fusion network to optimize the fusion and alignment of multi-sensor features. This network aligns image features to supplement environmental information with point cloud features, thereby obtaining the final BEV features. Additionally, a Transformer decoder that emphasizes global spatial cues is employed to process the BEV feature sequence, enabling precise detection of distant small objects. Experimental results demonstrate that this method surpasses the baseline network, with improvements of 4.5% in the NuScenes detection score and 5.5% in average precision for detection objects. Finally, the model is converted and accelerated using TensorRT tools for deployment on mobile devices, achieving an inference time of 138 ms per frame on the Jetson Orin NX embedded platform, thus enabling real-time 3D object detection.</p>\",\"PeriodicalId\":21698,\"journal\":{\"name\":\"Sensors\",\"volume\":\"24 21\",\"pages\":\"\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11548664/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sensors\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.3390/s24217007\",\"RegionNum\":3,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.3390/s24217007","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
DeployFusion: A Deployable Monocular 3D Object Detection with Multi-Sensor Information Fusion in BEV for Edge Devices.
To address the challenges of suboptimal remote detection and significant computational burden in existing multi-sensor information fusion 3D object detection methods, a novel approach based on Bird's-Eye View (BEV) is proposed. This method utilizes an enhanced lightweight EdgeNeXt feature extraction network, incorporating residual branches to address network degradation caused by the excessive depth of STDA encoding blocks. Meantime, deformable convolution is used to expand the receptive field and reduce computational complexity. The feature fusion module constructs a two-stage fusion network to optimize the fusion and alignment of multi-sensor features. This network aligns image features to supplement environmental information with point cloud features, thereby obtaining the final BEV features. Additionally, a Transformer decoder that emphasizes global spatial cues is employed to process the BEV feature sequence, enabling precise detection of distant small objects. Experimental results demonstrate that this method surpasses the baseline network, with improvements of 4.5% in the NuScenes detection score and 5.5% in average precision for detection objects. Finally, the model is converted and accelerated using TensorRT tools for deployment on mobile devices, achieving an inference time of 138 ms per frame on the Jetson Orin NX embedded platform, thus enabling real-time 3D object detection.
期刊介绍:
Sensors (ISSN 1424-8220) provides an advanced forum for the science and technology of sensors and biosensors. It publishes reviews (including comprehensive reviews on the complete sensors products), regular research papers and short notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.