Daniel Anheuer, Brid Karacan, Lara Herzog, Nora Weigel, Silja Meyer-Nieberg, Thomas Gebhardt, Jessica Freiherr, Martin Richter, Armin Leopold, Monika Eder, Marko Hofmann, Karl-Heinz Renner, Cornelia Küsel
{"title":"用于心理生理压力训练的虚拟现实微剂量气味框架。","authors":"Daniel Anheuer, Brid Karacan, Lara Herzog, Nora Weigel, Silja Meyer-Nieberg, Thomas Gebhardt, Jessica Freiherr, Martin Richter, Armin Leopold, Monika Eder, Marko Hofmann, Karl-Heinz Renner, Cornelia Küsel","doi":"10.3390/s24217046","DOIUrl":null,"url":null,"abstract":"<p><p>To better cope with stress in emergencies, emergency personnel undergo virtual reality (VR) stress training. Such training typically includes visual, auditory and sometimes tactile impressions, whereas olfactory stimuli are mostly neglected. This concept paper therefore examines whether odors might be beneficial for further enhancing the experience of presence and immersion into a simulated environment. The aim is to demonstrate the benefits of VR civilian stress training for emergency personnel and to investigate the role of odors as stressors by manipulating the degree of perceived psychophysiological stress via olfactory impressions. Moreover, the current paper presents the development and validation of a convenient and portable fragrance dosing system that allows personalized odor presentation in VR. The presented system can transport reproducible small quantities of an air-fragrance mixture close to the human nose using piezoelectric stainless steel micropumps. The results of the fluidic system validation indicate that the micropump is suitable for releasing odors close to the nose with constant amounts of odor presentation. Furthermore, the theoretical background and the planned experimental design of VR stress training, including odor presentation via olfactory VR technology, are elucidated.</p>","PeriodicalId":21698,"journal":{"name":"Sensors","volume":"24 21","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11548324/pdf/","citationCount":"0","resultStr":"{\"title\":\"Framework for Microdosing Odors in Virtual Reality for Psychophysiological Stress Training.\",\"authors\":\"Daniel Anheuer, Brid Karacan, Lara Herzog, Nora Weigel, Silja Meyer-Nieberg, Thomas Gebhardt, Jessica Freiherr, Martin Richter, Armin Leopold, Monika Eder, Marko Hofmann, Karl-Heinz Renner, Cornelia Küsel\",\"doi\":\"10.3390/s24217046\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>To better cope with stress in emergencies, emergency personnel undergo virtual reality (VR) stress training. Such training typically includes visual, auditory and sometimes tactile impressions, whereas olfactory stimuli are mostly neglected. This concept paper therefore examines whether odors might be beneficial for further enhancing the experience of presence and immersion into a simulated environment. The aim is to demonstrate the benefits of VR civilian stress training for emergency personnel and to investigate the role of odors as stressors by manipulating the degree of perceived psychophysiological stress via olfactory impressions. Moreover, the current paper presents the development and validation of a convenient and portable fragrance dosing system that allows personalized odor presentation in VR. The presented system can transport reproducible small quantities of an air-fragrance mixture close to the human nose using piezoelectric stainless steel micropumps. The results of the fluidic system validation indicate that the micropump is suitable for releasing odors close to the nose with constant amounts of odor presentation. Furthermore, the theoretical background and the planned experimental design of VR stress training, including odor presentation via olfactory VR technology, are elucidated.</p>\",\"PeriodicalId\":21698,\"journal\":{\"name\":\"Sensors\",\"volume\":\"24 21\",\"pages\":\"\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11548324/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sensors\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.3390/s24217046\",\"RegionNum\":3,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.3390/s24217046","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
Framework for Microdosing Odors in Virtual Reality for Psychophysiological Stress Training.
To better cope with stress in emergencies, emergency personnel undergo virtual reality (VR) stress training. Such training typically includes visual, auditory and sometimes tactile impressions, whereas olfactory stimuli are mostly neglected. This concept paper therefore examines whether odors might be beneficial for further enhancing the experience of presence and immersion into a simulated environment. The aim is to demonstrate the benefits of VR civilian stress training for emergency personnel and to investigate the role of odors as stressors by manipulating the degree of perceived psychophysiological stress via olfactory impressions. Moreover, the current paper presents the development and validation of a convenient and portable fragrance dosing system that allows personalized odor presentation in VR. The presented system can transport reproducible small quantities of an air-fragrance mixture close to the human nose using piezoelectric stainless steel micropumps. The results of the fluidic system validation indicate that the micropump is suitable for releasing odors close to the nose with constant amounts of odor presentation. Furthermore, the theoretical background and the planned experimental design of VR stress training, including odor presentation via olfactory VR technology, are elucidated.
期刊介绍:
Sensors (ISSN 1424-8220) provides an advanced forum for the science and technology of sensors and biosensors. It publishes reviews (including comprehensive reviews on the complete sensors products), regular research papers and short notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.