Mei-Ying Kwan, Yi-Fan Tu, Kit-Lun Yick, Joanne Yip, Nga Wun Li, Annie Yu, Ka-Wai Lo
{"title":"增强服装应用中纬编镶嵌间隔织物结构的力吸收、应力应变和热性能。","authors":"Mei-Ying Kwan, Yi-Fan Tu, Kit-Lun Yick, Joanne Yip, Nga Wun Li, Annie Yu, Ka-Wai Lo","doi":"10.3390/polym16213031","DOIUrl":null,"url":null,"abstract":"<p><p>The pursuit of materials that offer both wear comfort and protection for functional and protective clothing has led to the exploration of weft-knitted spacer structures. Traditional cushioning materials such as spacer fabrics and laminated foam often suffer from deformation under compression stresses, thus compromising their protective properties<sub>.</sub> This study investigates the enhancement of the force absorption, stress-strain, and thermal properties of weft-knitted spacer fabrics with inlays. Surface yarns with superior stretchability and thermal properties are used and combined with elastic yarns in various patterns to fabricate nine different inlay samples. The mechanical and thermal properties of these samples are systematically analyzed, including their compression, stretchability, thermal comfort, and surface properties. The results show that the inlay spacer fabric exhibits superior compression properties and thermal conductivity compared to traditional laminated foam and spacer fabrics while maintaining stretchability, thus providing better performance than traditional fabrics for protective clothing and wearable cushioning products. This study further confirms that the type of inlay yarn and inlay structure are crucial factors that significantly influence the thermal, tensile, and compressive properties of the fabric. This research provides valuable insights into the design and development of advanced textile structures to improve wear comfort and protection in close-fitting apparel applications.</p>","PeriodicalId":20416,"journal":{"name":"Polymers","volume":"16 21","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11548483/pdf/","citationCount":"0","resultStr":"{\"title\":\"Enhancing Force Absorption, Stress-Strain and Thermal Properties of Weft-Knitted Inlay Spacer Fabric Structures for Apparel Applications.\",\"authors\":\"Mei-Ying Kwan, Yi-Fan Tu, Kit-Lun Yick, Joanne Yip, Nga Wun Li, Annie Yu, Ka-Wai Lo\",\"doi\":\"10.3390/polym16213031\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The pursuit of materials that offer both wear comfort and protection for functional and protective clothing has led to the exploration of weft-knitted spacer structures. Traditional cushioning materials such as spacer fabrics and laminated foam often suffer from deformation under compression stresses, thus compromising their protective properties<sub>.</sub> This study investigates the enhancement of the force absorption, stress-strain, and thermal properties of weft-knitted spacer fabrics with inlays. Surface yarns with superior stretchability and thermal properties are used and combined with elastic yarns in various patterns to fabricate nine different inlay samples. The mechanical and thermal properties of these samples are systematically analyzed, including their compression, stretchability, thermal comfort, and surface properties. The results show that the inlay spacer fabric exhibits superior compression properties and thermal conductivity compared to traditional laminated foam and spacer fabrics while maintaining stretchability, thus providing better performance than traditional fabrics for protective clothing and wearable cushioning products. This study further confirms that the type of inlay yarn and inlay structure are crucial factors that significantly influence the thermal, tensile, and compressive properties of the fabric. This research provides valuable insights into the design and development of advanced textile structures to improve wear comfort and protection in close-fitting apparel applications.</p>\",\"PeriodicalId\":20416,\"journal\":{\"name\":\"Polymers\",\"volume\":\"16 21\",\"pages\":\"\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2024-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11548483/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Polymers\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/polym16213031\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymers","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/polym16213031","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
Enhancing Force Absorption, Stress-Strain and Thermal Properties of Weft-Knitted Inlay Spacer Fabric Structures for Apparel Applications.
The pursuit of materials that offer both wear comfort and protection for functional and protective clothing has led to the exploration of weft-knitted spacer structures. Traditional cushioning materials such as spacer fabrics and laminated foam often suffer from deformation under compression stresses, thus compromising their protective properties. This study investigates the enhancement of the force absorption, stress-strain, and thermal properties of weft-knitted spacer fabrics with inlays. Surface yarns with superior stretchability and thermal properties are used and combined with elastic yarns in various patterns to fabricate nine different inlay samples. The mechanical and thermal properties of these samples are systematically analyzed, including their compression, stretchability, thermal comfort, and surface properties. The results show that the inlay spacer fabric exhibits superior compression properties and thermal conductivity compared to traditional laminated foam and spacer fabrics while maintaining stretchability, thus providing better performance than traditional fabrics for protective clothing and wearable cushioning products. This study further confirms that the type of inlay yarn and inlay structure are crucial factors that significantly influence the thermal, tensile, and compressive properties of the fabric. This research provides valuable insights into the design and development of advanced textile structures to improve wear comfort and protection in close-fitting apparel applications.
期刊介绍:
Polymers (ISSN 2073-4360) is an international, open access journal of polymer science. It publishes research papers, short communications and review papers. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Polymers provides an interdisciplinary forum for publishing papers which advance the fields of (i) polymerization methods, (ii) theory, simulation, and modeling, (iii) understanding of new physical phenomena, (iv) advances in characterization techniques, and (v) harnessing of self-assembly and biological strategies for producing complex multifunctional structures.