对淀粉进行去结构化和重结构化以控制熔融和固态粘弹性,从而获得具有可扩展特性的新型多组分化合物。

IF 4.7 3区 工程技术 Q1 POLYMER SCIENCE
Polymers Pub Date : 2024-10-30 DOI:10.3390/polym16213063
Doina Dimonie, Ramona-Marina Grigorescu, Bogdan Trică, Monica Raduly, Celina-Maria Damian, Roxana Trusca, Alina-Elena Mustatea, Stefan-Ovidiu Dima, Florin Oancea
{"title":"对淀粉进行去结构化和重结构化以控制熔融和固态粘弹性,从而获得具有可扩展特性的新型多组分化合物。","authors":"Doina Dimonie, Ramona-Marina Grigorescu, Bogdan Trică, Monica Raduly, Celina-Maria Damian, Roxana Trusca, Alina-Elena Mustatea, Stefan-Ovidiu Dima, Florin Oancea","doi":"10.3390/polym16213063","DOIUrl":null,"url":null,"abstract":"<p><p>The aim of the article was to design and develop new thermodynamically stable starch-based compounds, with scalable properties, that are melt-processable into finished products by classic or 3D printing methods. This is based on phenomena of de-structuring, entanglement compatibilization, and re-structuring of starch, along with the modification of the polymer, polyvinyl alcohol (PVA), by following an experimental sequence involving pre-treatment and melt compounding in two stages. The new compounds selection was made considering the dependence of viscoelastic properties on formulation and flowing conditions in both the melted and solid states. Starting from starch with 125 °C glass transition and PVA with a T<sub>g</sub> at 85 °C, and following the mentioned experimental sequence, new starch-PVA compounds with a high macromolecular miscibility and proven thermodynamic stability for at least 10 years, with glass transitions ranging from -10 °C to 50 °C, optimal processability through both classical melt procedures (extrusion, injection) and 3D printing, as well as good scalability properties, were achieved. The results are connected to the approaches considering the relationship between miscibility and the lifetime of compounds with renewable-based polymer content. By deepening the understanding of the thermodynamic stability features characterizing these compounds, it can be possible to open the way for starch usage in medium-life compositions, not only for short-life applications, as until now.</p>","PeriodicalId":20416,"journal":{"name":"Polymers","volume":"16 21","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11548643/pdf/","citationCount":"0","resultStr":"{\"title\":\"De- and Re-Structuring of Starch to Control the Melt and Solid State Visco-Elasticity as Method for Getting New Multi Component Compounds with Scalable Properties.\",\"authors\":\"Doina Dimonie, Ramona-Marina Grigorescu, Bogdan Trică, Monica Raduly, Celina-Maria Damian, Roxana Trusca, Alina-Elena Mustatea, Stefan-Ovidiu Dima, Florin Oancea\",\"doi\":\"10.3390/polym16213063\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The aim of the article was to design and develop new thermodynamically stable starch-based compounds, with scalable properties, that are melt-processable into finished products by classic or 3D printing methods. This is based on phenomena of de-structuring, entanglement compatibilization, and re-structuring of starch, along with the modification of the polymer, polyvinyl alcohol (PVA), by following an experimental sequence involving pre-treatment and melt compounding in two stages. The new compounds selection was made considering the dependence of viscoelastic properties on formulation and flowing conditions in both the melted and solid states. Starting from starch with 125 °C glass transition and PVA with a T<sub>g</sub> at 85 °C, and following the mentioned experimental sequence, new starch-PVA compounds with a high macromolecular miscibility and proven thermodynamic stability for at least 10 years, with glass transitions ranging from -10 °C to 50 °C, optimal processability through both classical melt procedures (extrusion, injection) and 3D printing, as well as good scalability properties, were achieved. The results are connected to the approaches considering the relationship between miscibility and the lifetime of compounds with renewable-based polymer content. By deepening the understanding of the thermodynamic stability features characterizing these compounds, it can be possible to open the way for starch usage in medium-life compositions, not only for short-life applications, as until now.</p>\",\"PeriodicalId\":20416,\"journal\":{\"name\":\"Polymers\",\"volume\":\"16 21\",\"pages\":\"\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2024-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11548643/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Polymers\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/polym16213063\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymers","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/polym16213063","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

摘要

文章旨在设计和开发新型热力学稳定的淀粉基化合物,该化合物具有可扩展的特性,可通过传统或三维打印方法熔融加工成成品。其基础是淀粉的去结构化、缠结相容和重构现象,以及聚合物聚乙烯醇(PVA)的改性,实验过程包括预处理和熔融复合两个阶段。在选择新化合物时,考虑了熔融状态和固体状态下粘弹性能对配方和流动条件的依赖性。从玻璃化转变温度为 125 ℃ 的淀粉和 Tg 为 85 ℃ 的 PVA 开始,按照上述实验顺序,获得了新型淀粉-PVA 化合物,其大分子混溶性高,热力学稳定性至少经 10 年验证,玻璃化转变温度从 -10 ℃ 到 50 ℃ 不等,可通过传统熔融程序(挤出、注射)和 3D 打印实现最佳加工,并具有良好的可扩展性。这些结果与考虑混溶性与含有可再生聚合物成分的化合物寿命之间关系的方法有关。通过加深对这些化合物的热力学稳定性特征的了解,可以为淀粉在中等寿命成分中的应用开辟道路,而不是像现在这样只用于短寿命应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
De- and Re-Structuring of Starch to Control the Melt and Solid State Visco-Elasticity as Method for Getting New Multi Component Compounds with Scalable Properties.

The aim of the article was to design and develop new thermodynamically stable starch-based compounds, with scalable properties, that are melt-processable into finished products by classic or 3D printing methods. This is based on phenomena of de-structuring, entanglement compatibilization, and re-structuring of starch, along with the modification of the polymer, polyvinyl alcohol (PVA), by following an experimental sequence involving pre-treatment and melt compounding in two stages. The new compounds selection was made considering the dependence of viscoelastic properties on formulation and flowing conditions in both the melted and solid states. Starting from starch with 125 °C glass transition and PVA with a Tg at 85 °C, and following the mentioned experimental sequence, new starch-PVA compounds with a high macromolecular miscibility and proven thermodynamic stability for at least 10 years, with glass transitions ranging from -10 °C to 50 °C, optimal processability through both classical melt procedures (extrusion, injection) and 3D printing, as well as good scalability properties, were achieved. The results are connected to the approaches considering the relationship between miscibility and the lifetime of compounds with renewable-based polymer content. By deepening the understanding of the thermodynamic stability features characterizing these compounds, it can be possible to open the way for starch usage in medium-life compositions, not only for short-life applications, as until now.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Polymers
Polymers POLYMER SCIENCE-
CiteScore
8.00
自引率
16.00%
发文量
4697
审稿时长
1.3 months
期刊介绍: Polymers (ISSN 2073-4360) is an international, open access journal of polymer science. It publishes research papers, short communications and review papers. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Polymers provides an interdisciplinary forum for publishing papers which advance the fields of (i) polymerization methods, (ii) theory, simulation, and modeling, (iii) understanding of new physical phenomena, (iv) advances in characterization techniques, and (v) harnessing of self-assembly and biological strategies for producing complex multifunctional structures.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信