Zheng-Xiao Cao, Ting-Ting Liu, Bo Zhao, Carmelo Rosales-Guzmán, Jun Liu, Zhi-Han Zhu
{"title":"从单元变换看复杂结构光中的塔尔博特式图案演化。","authors":"Zheng-Xiao Cao, Ting-Ting Liu, Bo Zhao, Carmelo Rosales-Guzmán, Jun Liu, Zhi-Han Zhu","doi":"10.1364/OE.530909","DOIUrl":null,"url":null,"abstract":"<p><p>Astigmatic unitary transformations allow for the adiabatic connections of all feasible states of paraxial Gaussian beams on the same modal sphere, i.e., Hermite-Laguerre-Gaussian (HLG) modes. Here, we present a comprehensive investigation into the unitary modal evolution of complex structured Gaussian beams, comprised of HLG modes from disparate modal spheres, via astigmatic transformation. The non-synchronized higher-order geometric phases in cyclic transformations originate a Talbot-effect-like modal evolution in the superposition state of these HLG modes, resulting in pattern variations and revivals in transformations with specific geodesic loops. Using Ince-Gaussian modes as an illustrative example, we systematically analyze and experimentally corroborate the beamforming mechanism behind the pattern evolution. Our results outline a generic modal conversion theory of structured Gaussian beams via astigmatic unitary transformation, offering a new approach for shaping spatial modal structure. These findings may inspire a wide variety of applications based on structured light.</p>","PeriodicalId":19691,"journal":{"name":"Optics express","volume":"32 16","pages":"28025-28034"},"PeriodicalIF":3.2000,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Talbot-like pattern evolution in complex structured light from a unitary transformation.\",\"authors\":\"Zheng-Xiao Cao, Ting-Ting Liu, Bo Zhao, Carmelo Rosales-Guzmán, Jun Liu, Zhi-Han Zhu\",\"doi\":\"10.1364/OE.530909\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Astigmatic unitary transformations allow for the adiabatic connections of all feasible states of paraxial Gaussian beams on the same modal sphere, i.e., Hermite-Laguerre-Gaussian (HLG) modes. Here, we present a comprehensive investigation into the unitary modal evolution of complex structured Gaussian beams, comprised of HLG modes from disparate modal spheres, via astigmatic transformation. The non-synchronized higher-order geometric phases in cyclic transformations originate a Talbot-effect-like modal evolution in the superposition state of these HLG modes, resulting in pattern variations and revivals in transformations with specific geodesic loops. Using Ince-Gaussian modes as an illustrative example, we systematically analyze and experimentally corroborate the beamforming mechanism behind the pattern evolution. Our results outline a generic modal conversion theory of structured Gaussian beams via astigmatic unitary transformation, offering a new approach for shaping spatial modal structure. These findings may inspire a wide variety of applications based on structured light.</p>\",\"PeriodicalId\":19691,\"journal\":{\"name\":\"Optics express\",\"volume\":\"32 16\",\"pages\":\"28025-28034\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-07-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optics express\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1364/OE.530909\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optics express","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1364/OE.530909","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
Talbot-like pattern evolution in complex structured light from a unitary transformation.
Astigmatic unitary transformations allow for the adiabatic connections of all feasible states of paraxial Gaussian beams on the same modal sphere, i.e., Hermite-Laguerre-Gaussian (HLG) modes. Here, we present a comprehensive investigation into the unitary modal evolution of complex structured Gaussian beams, comprised of HLG modes from disparate modal spheres, via astigmatic transformation. The non-synchronized higher-order geometric phases in cyclic transformations originate a Talbot-effect-like modal evolution in the superposition state of these HLG modes, resulting in pattern variations and revivals in transformations with specific geodesic loops. Using Ince-Gaussian modes as an illustrative example, we systematically analyze and experimentally corroborate the beamforming mechanism behind the pattern evolution. Our results outline a generic modal conversion theory of structured Gaussian beams via astigmatic unitary transformation, offering a new approach for shaping spatial modal structure. These findings may inspire a wide variety of applications based on structured light.
期刊介绍:
Optics Express is the all-electronic, open access journal for optics providing rapid publication for peer-reviewed articles that emphasize scientific and technology innovations in all aspects of optics and photonics.