从单元变换看复杂结构光中的塔尔博特式图案演化。

IF 3.2 2区 物理与天体物理 Q2 OPTICS
Optics express Pub Date : 2024-07-29 DOI:10.1364/OE.530909
Zheng-Xiao Cao, Ting-Ting Liu, Bo Zhao, Carmelo Rosales-Guzmán, Jun Liu, Zhi-Han Zhu
{"title":"从单元变换看复杂结构光中的塔尔博特式图案演化。","authors":"Zheng-Xiao Cao, Ting-Ting Liu, Bo Zhao, Carmelo Rosales-Guzmán, Jun Liu, Zhi-Han Zhu","doi":"10.1364/OE.530909","DOIUrl":null,"url":null,"abstract":"<p><p>Astigmatic unitary transformations allow for the adiabatic connections of all feasible states of paraxial Gaussian beams on the same modal sphere, i.e., Hermite-Laguerre-Gaussian (HLG) modes. Here, we present a comprehensive investigation into the unitary modal evolution of complex structured Gaussian beams, comprised of HLG modes from disparate modal spheres, via astigmatic transformation. The non-synchronized higher-order geometric phases in cyclic transformations originate a Talbot-effect-like modal evolution in the superposition state of these HLG modes, resulting in pattern variations and revivals in transformations with specific geodesic loops. Using Ince-Gaussian modes as an illustrative example, we systematically analyze and experimentally corroborate the beamforming mechanism behind the pattern evolution. Our results outline a generic modal conversion theory of structured Gaussian beams via astigmatic unitary transformation, offering a new approach for shaping spatial modal structure. These findings may inspire a wide variety of applications based on structured light.</p>","PeriodicalId":19691,"journal":{"name":"Optics express","volume":"32 16","pages":"28025-28034"},"PeriodicalIF":3.2000,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Talbot-like pattern evolution in complex structured light from a unitary transformation.\",\"authors\":\"Zheng-Xiao Cao, Ting-Ting Liu, Bo Zhao, Carmelo Rosales-Guzmán, Jun Liu, Zhi-Han Zhu\",\"doi\":\"10.1364/OE.530909\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Astigmatic unitary transformations allow for the adiabatic connections of all feasible states of paraxial Gaussian beams on the same modal sphere, i.e., Hermite-Laguerre-Gaussian (HLG) modes. Here, we present a comprehensive investigation into the unitary modal evolution of complex structured Gaussian beams, comprised of HLG modes from disparate modal spheres, via astigmatic transformation. The non-synchronized higher-order geometric phases in cyclic transformations originate a Talbot-effect-like modal evolution in the superposition state of these HLG modes, resulting in pattern variations and revivals in transformations with specific geodesic loops. Using Ince-Gaussian modes as an illustrative example, we systematically analyze and experimentally corroborate the beamforming mechanism behind the pattern evolution. Our results outline a generic modal conversion theory of structured Gaussian beams via astigmatic unitary transformation, offering a new approach for shaping spatial modal structure. These findings may inspire a wide variety of applications based on structured light.</p>\",\"PeriodicalId\":19691,\"journal\":{\"name\":\"Optics express\",\"volume\":\"32 16\",\"pages\":\"28025-28034\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-07-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optics express\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1364/OE.530909\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optics express","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1364/OE.530909","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

摘要

通过星像单元变换,可以在同一模态球(即赫尔密特-拉盖尔-高斯模态(HLG))上将准高斯光束的所有可行状态绝热连接起来。在这里,我们通过散焦变换对复杂结构高斯光束的单元模态演化进行了全面研究,这些光束由来自不同模态球的 HLG 模态组成。循环变换中的非同步高阶几何相位在这些高斯模的叠加态中产生了类似塔尔博特效应的模态演化,从而导致了具有特定大地环的变换中的模式变化和复兴。我们以 Ince-Gaussian 模式为例,系统分析并通过实验证实了模式演变背后的波束成形机制。我们的研究结果概述了通过散光单元变换实现结构化高斯光束的通用模态转换理论,为塑造空间模态结构提供了一种新方法。这些发现可能会激发基于结构光的各种应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Talbot-like pattern evolution in complex structured light from a unitary transformation.

Astigmatic unitary transformations allow for the adiabatic connections of all feasible states of paraxial Gaussian beams on the same modal sphere, i.e., Hermite-Laguerre-Gaussian (HLG) modes. Here, we present a comprehensive investigation into the unitary modal evolution of complex structured Gaussian beams, comprised of HLG modes from disparate modal spheres, via astigmatic transformation. The non-synchronized higher-order geometric phases in cyclic transformations originate a Talbot-effect-like modal evolution in the superposition state of these HLG modes, resulting in pattern variations and revivals in transformations with specific geodesic loops. Using Ince-Gaussian modes as an illustrative example, we systematically analyze and experimentally corroborate the beamforming mechanism behind the pattern evolution. Our results outline a generic modal conversion theory of structured Gaussian beams via astigmatic unitary transformation, offering a new approach for shaping spatial modal structure. These findings may inspire a wide variety of applications based on structured light.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Optics express
Optics express 物理-光学
CiteScore
6.60
自引率
15.80%
发文量
5182
审稿时长
2.1 months
期刊介绍: Optics Express is the all-electronic, open access journal for optics providing rapid publication for peer-reviewed articles that emphasize scientific and technology innovations in all aspects of optics and photonics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信