Awad Alshahrani, Shereen M Aleidi, Mohammed Al Dubayee, Reem AlMalki, Rajaa Sebaa, Mahmoud Zhra, Anas M Abdel Rahman, Ahmad Aljada
{"title":"餐后代谢组学分析:洞察健康人的宏量营养素特异性代谢反应。","authors":"Awad Alshahrani, Shereen M Aleidi, Mohammed Al Dubayee, Reem AlMalki, Rajaa Sebaa, Mahmoud Zhra, Anas M Abdel Rahman, Ahmad Aljada","doi":"10.3390/nu16213783","DOIUrl":null,"url":null,"abstract":"<p><strong>Background/objectives: </strong>Understanding the metabolic responses to different macronutrients is crucial for assessing their impacts on health. This study aims to investigate the postprandial metabolomic profiles of healthy individuals following the consumption of glucose, protein, and lipids.</p><p><strong>Methods: </strong>Twenty-three healthy, normal-weight adults participated in the study, randomly assigned to consume 300 kcal from glucose, protein, or lipids after an overnight fast. Blood samples were collected at baseline and at 1, 2, and 3 h post-ingestion. An untargeted metabolomic approach using mass spectrometry was employed to analyze plasma metabolites.</p><p><strong>Results: </strong>In total, 21, 59, and 156 dysregulated metabolites were identified after glucose, protein, and lipid intake, respectively. Notably, 3'-O-methylguanosine levels decreased significantly after glucose consumption while remaining stable during lipid intake before increasing at 2 h. Common metabolites shared between glucose and lipid groups included 3'-O-methylguanosine, 3-oxotetradecanoic acid, poly-g-D-glutamate, and triglyceride (TG) (15:0/18:4/18:1).</p><p><strong>Conclusions: </strong>The findings highlight distinct metabolic responses to macronutrient intake, emphasizing the role of specific metabolites in regulating postprandial metabolism. These insights contribute to understanding how dietary components influence metabolic health and insulin sensitivity.</p>","PeriodicalId":19486,"journal":{"name":"Nutrients","volume":"16 21","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11547817/pdf/","citationCount":"0","resultStr":"{\"title\":\"Postprandial Metabolomic Profiling: Insights into Macronutrient-Specific Metabolic Responses in Healthy Individuals.\",\"authors\":\"Awad Alshahrani, Shereen M Aleidi, Mohammed Al Dubayee, Reem AlMalki, Rajaa Sebaa, Mahmoud Zhra, Anas M Abdel Rahman, Ahmad Aljada\",\"doi\":\"10.3390/nu16213783\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background/objectives: </strong>Understanding the metabolic responses to different macronutrients is crucial for assessing their impacts on health. This study aims to investigate the postprandial metabolomic profiles of healthy individuals following the consumption of glucose, protein, and lipids.</p><p><strong>Methods: </strong>Twenty-three healthy, normal-weight adults participated in the study, randomly assigned to consume 300 kcal from glucose, protein, or lipids after an overnight fast. Blood samples were collected at baseline and at 1, 2, and 3 h post-ingestion. An untargeted metabolomic approach using mass spectrometry was employed to analyze plasma metabolites.</p><p><strong>Results: </strong>In total, 21, 59, and 156 dysregulated metabolites were identified after glucose, protein, and lipid intake, respectively. Notably, 3'-O-methylguanosine levels decreased significantly after glucose consumption while remaining stable during lipid intake before increasing at 2 h. Common metabolites shared between glucose and lipid groups included 3'-O-methylguanosine, 3-oxotetradecanoic acid, poly-g-D-glutamate, and triglyceride (TG) (15:0/18:4/18:1).</p><p><strong>Conclusions: </strong>The findings highlight distinct metabolic responses to macronutrient intake, emphasizing the role of specific metabolites in regulating postprandial metabolism. These insights contribute to understanding how dietary components influence metabolic health and insulin sensitivity.</p>\",\"PeriodicalId\":19486,\"journal\":{\"name\":\"Nutrients\",\"volume\":\"16 21\",\"pages\":\"\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2024-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11547817/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nutrients\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3390/nu16213783\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NUTRITION & DIETETICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nutrients","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/nu16213783","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NUTRITION & DIETETICS","Score":null,"Total":0}
Postprandial Metabolomic Profiling: Insights into Macronutrient-Specific Metabolic Responses in Healthy Individuals.
Background/objectives: Understanding the metabolic responses to different macronutrients is crucial for assessing their impacts on health. This study aims to investigate the postprandial metabolomic profiles of healthy individuals following the consumption of glucose, protein, and lipids.
Methods: Twenty-three healthy, normal-weight adults participated in the study, randomly assigned to consume 300 kcal from glucose, protein, or lipids after an overnight fast. Blood samples were collected at baseline and at 1, 2, and 3 h post-ingestion. An untargeted metabolomic approach using mass spectrometry was employed to analyze plasma metabolites.
Results: In total, 21, 59, and 156 dysregulated metabolites were identified after glucose, protein, and lipid intake, respectively. Notably, 3'-O-methylguanosine levels decreased significantly after glucose consumption while remaining stable during lipid intake before increasing at 2 h. Common metabolites shared between glucose and lipid groups included 3'-O-methylguanosine, 3-oxotetradecanoic acid, poly-g-D-glutamate, and triglyceride (TG) (15:0/18:4/18:1).
Conclusions: The findings highlight distinct metabolic responses to macronutrient intake, emphasizing the role of specific metabolites in regulating postprandial metabolism. These insights contribute to understanding how dietary components influence metabolic health and insulin sensitivity.
期刊介绍:
Nutrients (ISSN 2072-6643) is an international, peer-reviewed open access advanced forum for studies related to Human Nutrition. It publishes reviews, regular research papers and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.