{"title":"铁催化聚山梨醇酯 80 氧化的机理特征:亚铁、过氧化氢和超氧化物的作用。","authors":"David S Richards, Yaqi Wu, Christian Schöneich","doi":"10.1016/j.xphs.2024.10.053","DOIUrl":null,"url":null,"abstract":"<p><p>We investigated the role of individual radical species during Fe-catalyzed oxidation of PS80. Solutions containing 1 gL<sup>-1</sup> PS80 (0.1 % w/v) in 10 mM acetate buffer (pH 6) were exposed to various amounts of either Fe(II) or Fe(III), hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>), and various enzymes or antioxidants. PS80 oxidation was measured using a fluorescence micelle assay (FMA) alongside LC-MS. Hydrogen peroxide inhibited PS80 oxidation in the presence of Fe(II) but promoted oxidation in the presence of Fe(III). Furthermore, Ferrostatin-1 (Fer-1), an antioxidant which is known to preferentially react with alkoxy radicals, inhibited PS80 oxidation in the presence of Fe(II). Superoxide dismutase (SOD) partially inhibited PS80 oxidation in the presence of either Fe(II) or Fe(III), suggesting that superoxide plays a role in both cases. Ferryl species (Fe<sup>IV</sup>=O) or hydroxyl radicals (HO•), produced by the Fenton reaction, do not play a major role in the oxidation of PS80. Rather, oxidation was initiated by the reaction of both Fe(II) and Fe(III) with pre-existing lipid hydroperoxides on PS80, as well as via superoxide.</p>","PeriodicalId":16741,"journal":{"name":"Journal of pharmaceutical sciences","volume":" ","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mechanistic characterization of iron-catalyzed oxidation of polysorbate 80: The role of ferrous iron, hydrogen peroxide, and superoxide.\",\"authors\":\"David S Richards, Yaqi Wu, Christian Schöneich\",\"doi\":\"10.1016/j.xphs.2024.10.053\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We investigated the role of individual radical species during Fe-catalyzed oxidation of PS80. Solutions containing 1 gL<sup>-1</sup> PS80 (0.1 % w/v) in 10 mM acetate buffer (pH 6) were exposed to various amounts of either Fe(II) or Fe(III), hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>), and various enzymes or antioxidants. PS80 oxidation was measured using a fluorescence micelle assay (FMA) alongside LC-MS. Hydrogen peroxide inhibited PS80 oxidation in the presence of Fe(II) but promoted oxidation in the presence of Fe(III). Furthermore, Ferrostatin-1 (Fer-1), an antioxidant which is known to preferentially react with alkoxy radicals, inhibited PS80 oxidation in the presence of Fe(II). Superoxide dismutase (SOD) partially inhibited PS80 oxidation in the presence of either Fe(II) or Fe(III), suggesting that superoxide plays a role in both cases. Ferryl species (Fe<sup>IV</sup>=O) or hydroxyl radicals (HO•), produced by the Fenton reaction, do not play a major role in the oxidation of PS80. Rather, oxidation was initiated by the reaction of both Fe(II) and Fe(III) with pre-existing lipid hydroperoxides on PS80, as well as via superoxide.</p>\",\"PeriodicalId\":16741,\"journal\":{\"name\":\"Journal of pharmaceutical sciences\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of pharmaceutical sciences\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.xphs.2024.10.053\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of pharmaceutical sciences","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.xphs.2024.10.053","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
Mechanistic characterization of iron-catalyzed oxidation of polysorbate 80: The role of ferrous iron, hydrogen peroxide, and superoxide.
We investigated the role of individual radical species during Fe-catalyzed oxidation of PS80. Solutions containing 1 gL-1 PS80 (0.1 % w/v) in 10 mM acetate buffer (pH 6) were exposed to various amounts of either Fe(II) or Fe(III), hydrogen peroxide (H2O2), and various enzymes or antioxidants. PS80 oxidation was measured using a fluorescence micelle assay (FMA) alongside LC-MS. Hydrogen peroxide inhibited PS80 oxidation in the presence of Fe(II) but promoted oxidation in the presence of Fe(III). Furthermore, Ferrostatin-1 (Fer-1), an antioxidant which is known to preferentially react with alkoxy radicals, inhibited PS80 oxidation in the presence of Fe(II). Superoxide dismutase (SOD) partially inhibited PS80 oxidation in the presence of either Fe(II) or Fe(III), suggesting that superoxide plays a role in both cases. Ferryl species (FeIV=O) or hydroxyl radicals (HO•), produced by the Fenton reaction, do not play a major role in the oxidation of PS80. Rather, oxidation was initiated by the reaction of both Fe(II) and Fe(III) with pre-existing lipid hydroperoxides on PS80, as well as via superoxide.
期刊介绍:
The Journal of Pharmaceutical Sciences will publish original research papers, original research notes, invited topical reviews (including Minireviews), and editorial commentary and news. The area of focus shall be concepts in basic pharmaceutical science and such topics as chemical processing of pharmaceuticals, including crystallization, lyophilization, chemical stability of drugs, pharmacokinetics, biopharmaceutics, pharmacodynamics, pro-drug developments, metabolic disposition of bioactive agents, dosage form design, protein-peptide chemistry and biotechnology specifically as these relate to pharmaceutical technology, and targeted drug delivery.