ChatGPT 在心衰预防、诊断、管理和研究中的应用:叙述性综述。

IF 3 3区 医学 Q1 MEDICINE, GENERAL & INTERNAL
Sai Nikhila Ghanta, Subhi J Al'Aref, Anuradha Lala-Trinidade, Girish N Nadkarni, Sarju Ganatra, Sourbha S Dani, Jawahar L Mehta
{"title":"ChatGPT 在心衰预防、诊断、管理和研究中的应用:叙述性综述。","authors":"Sai Nikhila Ghanta, Subhi J Al'Aref, Anuradha Lala-Trinidade, Girish N Nadkarni, Sarju Ganatra, Sourbha S Dani, Jawahar L Mehta","doi":"10.3390/diagnostics14212393","DOIUrl":null,"url":null,"abstract":"<p><p>Heart failure (HF) is a leading cause of mortality, morbidity, and financial burden worldwide. The emergence of advanced artificial intelligence (AI) technologies, particularly Generative Pre-trained Transformer (GPT) systems, presents new opportunities to enhance HF management. In this review, we identified and examined existing studies on the use of ChatGPT in HF care by searching multiple medical databases (PubMed, Google Scholar, Medline, and Scopus). We assessed the role of ChatGPT in HF prevention, diagnosis, and management, focusing on its influence on clinical decision-making and patient education. However, ChatGPT faces limited training data, inherent biases, and ethical issues that hinder its widespread clinical adoption. We review these limitations and highlight the need for improved training approaches, greater model transparency, and robust regulatory compliance. Additionally, we explore the effectiveness of ChatGPT in managing HF, particularly in reducing hospital readmissions and improving patient outcomes with customized treatment plans while addressing social determinants of health (SDoH). In this review, we aim to provide healthcare professionals and policymakers with an in-depth understanding of ChatGPT's potential and constraints within the realm of HF care.</p>","PeriodicalId":11225,"journal":{"name":"Diagnostics","volume":"14 21","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11544991/pdf/","citationCount":"0","resultStr":"{\"title\":\"Applications of ChatGPT in Heart Failure Prevention, Diagnosis, Management, and Research: A Narrative Review.\",\"authors\":\"Sai Nikhila Ghanta, Subhi J Al'Aref, Anuradha Lala-Trinidade, Girish N Nadkarni, Sarju Ganatra, Sourbha S Dani, Jawahar L Mehta\",\"doi\":\"10.3390/diagnostics14212393\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Heart failure (HF) is a leading cause of mortality, morbidity, and financial burden worldwide. The emergence of advanced artificial intelligence (AI) technologies, particularly Generative Pre-trained Transformer (GPT) systems, presents new opportunities to enhance HF management. In this review, we identified and examined existing studies on the use of ChatGPT in HF care by searching multiple medical databases (PubMed, Google Scholar, Medline, and Scopus). We assessed the role of ChatGPT in HF prevention, diagnosis, and management, focusing on its influence on clinical decision-making and patient education. However, ChatGPT faces limited training data, inherent biases, and ethical issues that hinder its widespread clinical adoption. We review these limitations and highlight the need for improved training approaches, greater model transparency, and robust regulatory compliance. Additionally, we explore the effectiveness of ChatGPT in managing HF, particularly in reducing hospital readmissions and improving patient outcomes with customized treatment plans while addressing social determinants of health (SDoH). In this review, we aim to provide healthcare professionals and policymakers with an in-depth understanding of ChatGPT's potential and constraints within the realm of HF care.</p>\",\"PeriodicalId\":11225,\"journal\":{\"name\":\"Diagnostics\",\"volume\":\"14 21\",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-10-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11544991/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Diagnostics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3390/diagnostics14212393\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MEDICINE, GENERAL & INTERNAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Diagnostics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/diagnostics14212393","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, GENERAL & INTERNAL","Score":null,"Total":0}
引用次数: 0

摘要

心力衰竭(HF)是导致全球死亡、发病和经济负担的主要原因。先进的人工智能(AI)技术,尤其是预训练生成式变压器(GPT)系统的出现,为加强心衰管理带来了新的机遇。在这篇综述中,我们通过搜索多个医学数据库(PubMed、谷歌学术、Medline 和 Scopus),确定并检查了有关在高血压护理中使用 ChatGPT 的现有研究。我们评估了 ChatGPT 在高血压预防、诊断和管理中的作用,重点关注其对临床决策和患者教育的影响。然而,ChatGPT 面临着有限的培训数据、固有的偏见和伦理问题,这些都阻碍了它在临床上的广泛应用。我们回顾了这些局限性,并强调了改进培训方法、提高模型透明度和加强监管合规性的必要性。此外,我们还探讨了 ChatGPT 在管理高血压方面的有效性,尤其是在减少再入院率和通过定制治疗计划改善患者预后方面,同时解决健康的社会决定因素 (SDoH)。在这篇综述中,我们旨在让医疗保健专业人士和政策制定者深入了解 ChatGPT 在高频医疗领域的潜力和限制因素。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Applications of ChatGPT in Heart Failure Prevention, Diagnosis, Management, and Research: A Narrative Review.

Heart failure (HF) is a leading cause of mortality, morbidity, and financial burden worldwide. The emergence of advanced artificial intelligence (AI) technologies, particularly Generative Pre-trained Transformer (GPT) systems, presents new opportunities to enhance HF management. In this review, we identified and examined existing studies on the use of ChatGPT in HF care by searching multiple medical databases (PubMed, Google Scholar, Medline, and Scopus). We assessed the role of ChatGPT in HF prevention, diagnosis, and management, focusing on its influence on clinical decision-making and patient education. However, ChatGPT faces limited training data, inherent biases, and ethical issues that hinder its widespread clinical adoption. We review these limitations and highlight the need for improved training approaches, greater model transparency, and robust regulatory compliance. Additionally, we explore the effectiveness of ChatGPT in managing HF, particularly in reducing hospital readmissions and improving patient outcomes with customized treatment plans while addressing social determinants of health (SDoH). In this review, we aim to provide healthcare professionals and policymakers with an in-depth understanding of ChatGPT's potential and constraints within the realm of HF care.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Diagnostics
Diagnostics Biochemistry, Genetics and Molecular Biology-Clinical Biochemistry
CiteScore
4.70
自引率
8.30%
发文量
2699
审稿时长
19.64 days
期刊介绍: Diagnostics (ISSN 2075-4418) is an international scholarly open access journal on medical diagnostics. It publishes original research articles, reviews, communications and short notes on the research and development of medical diagnostics. There is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental and/or methodological details must be provided for research articles.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信