Chi Zhang, Yanan Shi, Jing Tao, Jianqi Zhang, Hao Zhang, Dingding Qiu, Caixuan Wang, Chenyang Tian, Zhixiang Wei, Kun Lu
{"title":"通过协同优化非富勒烯受体中的扩展端帽基团和氟化喹喔啉中心核实现高效稳定的有机太阳能电池","authors":"Chi Zhang, Yanan Shi, Jing Tao, Jianqi Zhang, Hao Zhang, Dingding Qiu, Caixuan Wang, Chenyang Tian, Zhixiang Wei, Kun Lu","doi":"10.1002/aenm.202403806","DOIUrl":null,"url":null,"abstract":"Molecular stacking behavior exerts a significant influence on the blend film morphology of organic solar cells (OSCs), further affecting device performance and stability. Modulation of the molecular structure, such as central unit and end-group, can profoundly impact this process. Herein, four quinoxaline (Qx)-fused-core-based non-fullerene acceptors (NFAs), Qx-N4F and Qx-<i>o/m/p</i>-N4F are synthesized combining π-extended end-groups and optimized central units. The isomeric fluorinated central units lead to changes in the local dipole moments and electrostatic potential distribution, which influences the molecular stacking pattern and photoelectronic properties of NFAs. Consequently, binary and ternary devices based on PM6:Qx-<i>p</i>-N4F achieve superior power conversion efficiencies (PCE) of up to 18.75% and 19.48%, respectively. Grazing-incidence wide-angle X-ray scattering (GIWAXS) characterization reveals Qx-<i>p</i>-N4F's stronger crystallinity, aggregation, and donor–acceptor interactions, which can separately enhance short-circuit current density (<i>J</i><sub>SC</sub>) and fill factor (FF) through higher phase purity and tighter molecular stacking based on maintaining more donor–acceptor interfaces. Furthermore, PM6:Qx-<i>p</i>-N4F-based devices demonstrate exceptional thermal stability, retaining 93.2% of the initial PCE value after 3000 h of heating due to the best morphological stability with the most stable stacking structure. These results underscore the significance of synergistic optimization of NFAs through conjugation expansion and halogenation substitution for obtaining efficient and stable OSCs.","PeriodicalId":111,"journal":{"name":"Advanced Energy Materials","volume":"11 1","pages":""},"PeriodicalIF":24.4000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Efficient and Stable Organic Solar Cells Achieved by Synergistic Optimization of Extended End-Capped Groups and Fluorinated Quinoxaline Central Cores in Nonfullerene Acceptors\",\"authors\":\"Chi Zhang, Yanan Shi, Jing Tao, Jianqi Zhang, Hao Zhang, Dingding Qiu, Caixuan Wang, Chenyang Tian, Zhixiang Wei, Kun Lu\",\"doi\":\"10.1002/aenm.202403806\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Molecular stacking behavior exerts a significant influence on the blend film morphology of organic solar cells (OSCs), further affecting device performance and stability. Modulation of the molecular structure, such as central unit and end-group, can profoundly impact this process. Herein, four quinoxaline (Qx)-fused-core-based non-fullerene acceptors (NFAs), Qx-N4F and Qx-<i>o/m/p</i>-N4F are synthesized combining π-extended end-groups and optimized central units. The isomeric fluorinated central units lead to changes in the local dipole moments and electrostatic potential distribution, which influences the molecular stacking pattern and photoelectronic properties of NFAs. Consequently, binary and ternary devices based on PM6:Qx-<i>p</i>-N4F achieve superior power conversion efficiencies (PCE) of up to 18.75% and 19.48%, respectively. Grazing-incidence wide-angle X-ray scattering (GIWAXS) characterization reveals Qx-<i>p</i>-N4F's stronger crystallinity, aggregation, and donor–acceptor interactions, which can separately enhance short-circuit current density (<i>J</i><sub>SC</sub>) and fill factor (FF) through higher phase purity and tighter molecular stacking based on maintaining more donor–acceptor interfaces. Furthermore, PM6:Qx-<i>p</i>-N4F-based devices demonstrate exceptional thermal stability, retaining 93.2% of the initial PCE value after 3000 h of heating due to the best morphological stability with the most stable stacking structure. These results underscore the significance of synergistic optimization of NFAs through conjugation expansion and halogenation substitution for obtaining efficient and stable OSCs.\",\"PeriodicalId\":111,\"journal\":{\"name\":\"Advanced Energy Materials\",\"volume\":\"11 1\",\"pages\":\"\"},\"PeriodicalIF\":24.4000,\"publicationDate\":\"2024-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Energy Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/aenm.202403806\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Energy Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/aenm.202403806","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Efficient and Stable Organic Solar Cells Achieved by Synergistic Optimization of Extended End-Capped Groups and Fluorinated Quinoxaline Central Cores in Nonfullerene Acceptors
Molecular stacking behavior exerts a significant influence on the blend film morphology of organic solar cells (OSCs), further affecting device performance and stability. Modulation of the molecular structure, such as central unit and end-group, can profoundly impact this process. Herein, four quinoxaline (Qx)-fused-core-based non-fullerene acceptors (NFAs), Qx-N4F and Qx-o/m/p-N4F are synthesized combining π-extended end-groups and optimized central units. The isomeric fluorinated central units lead to changes in the local dipole moments and electrostatic potential distribution, which influences the molecular stacking pattern and photoelectronic properties of NFAs. Consequently, binary and ternary devices based on PM6:Qx-p-N4F achieve superior power conversion efficiencies (PCE) of up to 18.75% and 19.48%, respectively. Grazing-incidence wide-angle X-ray scattering (GIWAXS) characterization reveals Qx-p-N4F's stronger crystallinity, aggregation, and donor–acceptor interactions, which can separately enhance short-circuit current density (JSC) and fill factor (FF) through higher phase purity and tighter molecular stacking based on maintaining more donor–acceptor interfaces. Furthermore, PM6:Qx-p-N4F-based devices demonstrate exceptional thermal stability, retaining 93.2% of the initial PCE value after 3000 h of heating due to the best morphological stability with the most stable stacking structure. These results underscore the significance of synergistic optimization of NFAs through conjugation expansion and halogenation substitution for obtaining efficient and stable OSCs.
期刊介绍:
Established in 2011, Advanced Energy Materials is an international, interdisciplinary, English-language journal that focuses on materials used in energy harvesting, conversion, and storage. It is regarded as a top-quality journal alongside Advanced Materials, Advanced Functional Materials, and Small.
With a 2022 Impact Factor of 27.8, Advanced Energy Materials is considered a prime source for the best energy-related research. The journal covers a wide range of topics in energy-related research, including organic and inorganic photovoltaics, batteries and supercapacitors, fuel cells, hydrogen generation and storage, thermoelectrics, water splitting and photocatalysis, solar fuels and thermosolar power, magnetocalorics, and piezoelectronics.
The readership of Advanced Energy Materials includes materials scientists, chemists, physicists, and engineers in both academia and industry. The journal is indexed in various databases and collections, such as Advanced Technologies & Aerospace Database, FIZ Karlsruhe, INSPEC (IET), Science Citation Index Expanded, Technology Collection, and Web of Science, among others.