{"title":"FUS/circZEB1/miR-128-3p/LBH反馈环路通过TNF-α介导的NF-κB信号通路促成了GSCs的恶性表型。","authors":"Guoqing Zhang, Yang Jiang, Zhichao Wang, Zhengting Guo, Jinpeng Hu, Xinqiao Li, Yongfeng Wang, Zhitao Jing","doi":"10.1186/s12935-024-03526-8","DOIUrl":null,"url":null,"abstract":"<p><p>Glioblastoma (GBM) is the most lethal and common primary tumor of central nervous system with a poor prognosis. Glioma stem cells (GSCs) are particularly significant in GBM proliferation, invasion, self-renewal and recurrence. Circular RNAs (circRNAs) play important roles in various physiological and pathological processes, including regulating the biological behavior of GBM. Therefore, discovering novel circRNAs related to GSCs may contribute to a promising approach for treatment of GBM. Herein, we find out a novel circRNA termed circZEB1 with a high expression in glioma. Limb-bud and heart (LBH) is a transcription cofactor and promotes glioma stem cell tumorigenicity in our study. Mechanistically, circZEB1 can upregulate the expression of transcription cofactor LBH via sponging miR-128-3p in GSCs. LBH can facilitate the expression of tumor necrosis factor-α (TNF-α), thus activating the NF-κB signaling pathway to promote the glioma progression. Meanwhile, LBH can also upregulate the RNA binding protein Fused in Sarcoma (FUS) expression, which can bind to and maintain the stability of circZEB1. A positive feedback loop is formed among FUS, circZEB1, miR-128-3p and LBH in GSCs. Our study uncovers a critical role of circZEB1 and provides a novel biomarker for treating GBM.</p>","PeriodicalId":9385,"journal":{"name":"Cancer Cell International","volume":"24 1","pages":"365"},"PeriodicalIF":5.3000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11545228/pdf/","citationCount":"0","resultStr":"{\"title\":\"FUS/circZEB1/miR-128-3p/LBH feedback loop contributes to the malignant phenotype of GSCs via TNF-α-mediated NF-κB signaling pathway.\",\"authors\":\"Guoqing Zhang, Yang Jiang, Zhichao Wang, Zhengting Guo, Jinpeng Hu, Xinqiao Li, Yongfeng Wang, Zhitao Jing\",\"doi\":\"10.1186/s12935-024-03526-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Glioblastoma (GBM) is the most lethal and common primary tumor of central nervous system with a poor prognosis. Glioma stem cells (GSCs) are particularly significant in GBM proliferation, invasion, self-renewal and recurrence. Circular RNAs (circRNAs) play important roles in various physiological and pathological processes, including regulating the biological behavior of GBM. Therefore, discovering novel circRNAs related to GSCs may contribute to a promising approach for treatment of GBM. Herein, we find out a novel circRNA termed circZEB1 with a high expression in glioma. Limb-bud and heart (LBH) is a transcription cofactor and promotes glioma stem cell tumorigenicity in our study. Mechanistically, circZEB1 can upregulate the expression of transcription cofactor LBH via sponging miR-128-3p in GSCs. LBH can facilitate the expression of tumor necrosis factor-α (TNF-α), thus activating the NF-κB signaling pathway to promote the glioma progression. Meanwhile, LBH can also upregulate the RNA binding protein Fused in Sarcoma (FUS) expression, which can bind to and maintain the stability of circZEB1. A positive feedback loop is formed among FUS, circZEB1, miR-128-3p and LBH in GSCs. Our study uncovers a critical role of circZEB1 and provides a novel biomarker for treating GBM.</p>\",\"PeriodicalId\":9385,\"journal\":{\"name\":\"Cancer Cell International\",\"volume\":\"24 1\",\"pages\":\"365\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11545228/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cancer Cell International\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s12935-024-03526-8\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer Cell International","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12935-024-03526-8","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
FUS/circZEB1/miR-128-3p/LBH feedback loop contributes to the malignant phenotype of GSCs via TNF-α-mediated NF-κB signaling pathway.
Glioblastoma (GBM) is the most lethal and common primary tumor of central nervous system with a poor prognosis. Glioma stem cells (GSCs) are particularly significant in GBM proliferation, invasion, self-renewal and recurrence. Circular RNAs (circRNAs) play important roles in various physiological and pathological processes, including regulating the biological behavior of GBM. Therefore, discovering novel circRNAs related to GSCs may contribute to a promising approach for treatment of GBM. Herein, we find out a novel circRNA termed circZEB1 with a high expression in glioma. Limb-bud and heart (LBH) is a transcription cofactor and promotes glioma stem cell tumorigenicity in our study. Mechanistically, circZEB1 can upregulate the expression of transcription cofactor LBH via sponging miR-128-3p in GSCs. LBH can facilitate the expression of tumor necrosis factor-α (TNF-α), thus activating the NF-κB signaling pathway to promote the glioma progression. Meanwhile, LBH can also upregulate the RNA binding protein Fused in Sarcoma (FUS) expression, which can bind to and maintain the stability of circZEB1. A positive feedback loop is formed among FUS, circZEB1, miR-128-3p and LBH in GSCs. Our study uncovers a critical role of circZEB1 and provides a novel biomarker for treating GBM.
期刊介绍:
Cancer Cell International publishes articles on all aspects of cancer cell biology, originating largely from, but not limited to, work using cell culture techniques.
The journal focuses on novel cancer studies reporting data from biological experiments performed on cells grown in vitro, in two- or three-dimensional systems, and/or in vivo (animal experiments). These types of experiments have provided crucial data in many fields, from cell proliferation and transformation, to epithelial-mesenchymal interaction, to apoptosis, and host immune response to tumors.
Cancer Cell International also considers articles that focus on novel technologies or novel pathways in molecular analysis and on epidemiological studies that may affect patient care, as well as articles reporting translational cancer research studies where in vitro discoveries are bridged to the clinic. As such, the journal is interested in laboratory and animal studies reporting on novel biomarkers of tumor progression and response to therapy and on their applicability to human cancers.