{"title":"基于新型溶解-分散-包衣方法的 n-B 石榴微球的精确制备和优异的燃烧性能","authors":"Yushu Xiong, Baoxuan Li, Yinghong Wang, Linlin Liu, Jie Huang, Suhang Chen, Fengqi Zhao, Kangzhen Xu","doi":"10.1016/j.cej.2024.157624","DOIUrl":null,"url":null,"abstract":"To enhance the reactivity and combustion efficacy of boron powders, a new dissolution-dispersion-coating (DDC) method of fabricating nano-boron (n-B) pomegranate microspheres were developed. Metal nanoparticles were uniformly encapsulated within n-B microspheres, which varied in size from 2 to 500 μm. The spheroidization mechanism of microsphere structure was investigated. Subsequently, the ignition and combustion performance of the prepared pomegranate microspheres were evaluated by combustion tests at 0.2 and 0.5 MPa, respectively. The results demonstrated that the n-B microspheres of F5 (75 wt% n-B@17 wt% NC@8 wt% n-Ti) exhibited superior performances, achieving the largest flame area, minimal ignition delay time and combustion time. The combustion thermal value and combustion residue analysis indicated that the content of available boron in the F5 microspheres exceeded 72.6 % and the combustion was complete. This study provides a novel approach to enhance the ignition and combustion efficiency of n-B powders.","PeriodicalId":270,"journal":{"name":"Chemical Engineering Journal","volume":"72 1","pages":""},"PeriodicalIF":13.3000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Precise fabrication and superior combustion properties of n-B pomegranate microspheres based on a new dissolution-dispersion-coating method\",\"authors\":\"Yushu Xiong, Baoxuan Li, Yinghong Wang, Linlin Liu, Jie Huang, Suhang Chen, Fengqi Zhao, Kangzhen Xu\",\"doi\":\"10.1016/j.cej.2024.157624\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To enhance the reactivity and combustion efficacy of boron powders, a new dissolution-dispersion-coating (DDC) method of fabricating nano-boron (n-B) pomegranate microspheres were developed. Metal nanoparticles were uniformly encapsulated within n-B microspheres, which varied in size from 2 to 500 μm. The spheroidization mechanism of microsphere structure was investigated. Subsequently, the ignition and combustion performance of the prepared pomegranate microspheres were evaluated by combustion tests at 0.2 and 0.5 MPa, respectively. The results demonstrated that the n-B microspheres of F5 (75 wt% n-B@17 wt% NC@8 wt% n-Ti) exhibited superior performances, achieving the largest flame area, minimal ignition delay time and combustion time. The combustion thermal value and combustion residue analysis indicated that the content of available boron in the F5 microspheres exceeded 72.6 % and the combustion was complete. This study provides a novel approach to enhance the ignition and combustion efficiency of n-B powders.\",\"PeriodicalId\":270,\"journal\":{\"name\":\"Chemical Engineering Journal\",\"volume\":\"72 1\",\"pages\":\"\"},\"PeriodicalIF\":13.3000,\"publicationDate\":\"2024-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical Engineering Journal\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1016/j.cej.2024.157624\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Engineering Journal","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.cej.2024.157624","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
Precise fabrication and superior combustion properties of n-B pomegranate microspheres based on a new dissolution-dispersion-coating method
To enhance the reactivity and combustion efficacy of boron powders, a new dissolution-dispersion-coating (DDC) method of fabricating nano-boron (n-B) pomegranate microspheres were developed. Metal nanoparticles were uniformly encapsulated within n-B microspheres, which varied in size from 2 to 500 μm. The spheroidization mechanism of microsphere structure was investigated. Subsequently, the ignition and combustion performance of the prepared pomegranate microspheres were evaluated by combustion tests at 0.2 and 0.5 MPa, respectively. The results demonstrated that the n-B microspheres of F5 (75 wt% n-B@17 wt% NC@8 wt% n-Ti) exhibited superior performances, achieving the largest flame area, minimal ignition delay time and combustion time. The combustion thermal value and combustion residue analysis indicated that the content of available boron in the F5 microspheres exceeded 72.6 % and the combustion was complete. This study provides a novel approach to enhance the ignition and combustion efficiency of n-B powders.
期刊介绍:
The Chemical Engineering Journal is an international research journal that invites contributions of original and novel fundamental research. It aims to provide an international platform for presenting original fundamental research, interpretative reviews, and discussions on new developments in chemical engineering. The journal welcomes papers that describe novel theory and its practical application, as well as those that demonstrate the transfer of techniques from other disciplines. It also welcomes reports on carefully conducted experimental work that is soundly interpreted. The main focus of the journal is on original and rigorous research results that have broad significance. The Catalysis section within the Chemical Engineering Journal focuses specifically on Experimental and Theoretical studies in the fields of heterogeneous catalysis, molecular catalysis, and biocatalysis. These studies have industrial impact on various sectors such as chemicals, energy, materials, foods, healthcare, and environmental protection.