用于电力线通信的脉冲噪声抑制网络

IF 3.7 3区 计算机科学 Q2 TELECOMMUNICATIONS
Shuiqing Ouyang;Guojin Liu;Tiancong Huang;Yuanbo Liu;Weiyang Xu;Yucheng Wu
{"title":"用于电力线通信的脉冲噪声抑制网络","authors":"Shuiqing Ouyang;Guojin Liu;Tiancong Huang;Yuanbo Liu;Weiyang Xu;Yucheng Wu","doi":"10.1109/LCOMM.2024.3466893","DOIUrl":null,"url":null,"abstract":"This letter proposes a multi-features space domain fusion network (MFSDF-Net) to address impulsive noise suppression issues in power line communication (PLC) systems. As an end-to-end model, the proposed deep learning algorithm eliminates the need for designing null subcarriers in the original signals and fitting the data distribution at the receiver side. By utilizing parallel convolutional kernels to extract and fuse details from different domains of the signals, MFSDF-Net effectively captures dynamic changes. This enables it to more accurately and effectively identify and suppress impulsive noise, thus addressing the shortcomings of existing algorithms that inadequately identify impulsive noise and exhibit the bit error ratio (BER) floor effect. Simulation results show that with perfect channel estimation, the signal-to-noise ratio (SNR) at a BER of 1e-5 is 18 dB for this model, compared to 26 dB or higher for others, indicating an 8 dB improvement. With imperfect channel estimation, this model achieves an SNR of 30 dB at a BER of 1e-5, while other algorithms exhibit a BER floor effect.","PeriodicalId":13197,"journal":{"name":"IEEE Communications Letters","volume":"28 11","pages":"2628-2632"},"PeriodicalIF":3.7000,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Impulsive Noise Suppression Network for Power Line Communication\",\"authors\":\"Shuiqing Ouyang;Guojin Liu;Tiancong Huang;Yuanbo Liu;Weiyang Xu;Yucheng Wu\",\"doi\":\"10.1109/LCOMM.2024.3466893\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This letter proposes a multi-features space domain fusion network (MFSDF-Net) to address impulsive noise suppression issues in power line communication (PLC) systems. As an end-to-end model, the proposed deep learning algorithm eliminates the need for designing null subcarriers in the original signals and fitting the data distribution at the receiver side. By utilizing parallel convolutional kernels to extract and fuse details from different domains of the signals, MFSDF-Net effectively captures dynamic changes. This enables it to more accurately and effectively identify and suppress impulsive noise, thus addressing the shortcomings of existing algorithms that inadequately identify impulsive noise and exhibit the bit error ratio (BER) floor effect. Simulation results show that with perfect channel estimation, the signal-to-noise ratio (SNR) at a BER of 1e-5 is 18 dB for this model, compared to 26 dB or higher for others, indicating an 8 dB improvement. With imperfect channel estimation, this model achieves an SNR of 30 dB at a BER of 1e-5, while other algorithms exhibit a BER floor effect.\",\"PeriodicalId\":13197,\"journal\":{\"name\":\"IEEE Communications Letters\",\"volume\":\"28 11\",\"pages\":\"2628-2632\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Communications Letters\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10689653/\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"TELECOMMUNICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Communications Letters","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10689653/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种多特征空间域融合网络(MFSDF-Net),以解决电力线通信(PLC)系统中的脉冲噪声抑制问题。作为一种端到端模型,所提出的深度学习算法无需在原始信号中设计空子载波,也无需在接收端拟合数据分布。通过利用并行卷积核来提取和融合信号不同域的细节,MFSDF-Net 能有效捕捉动态变化。这使它能够更准确、更有效地识别和抑制脉冲噪声,从而解决了现有算法不能充分识别脉冲噪声并表现出误码率(BER)下限效应的缺点。仿真结果表明,在完美信道估计的情况下,该模型在误码率为 1e-5 时的信噪比(SNR)为 18 dB,而其他模型为 26 dB 或更高,这表明信噪比提高了 8 dB。在信道估计不完全的情况下,该模型在误码率为 1e-5 时的信噪比为 30 dB,而其他算法则表现出误码率下限效应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Impulsive Noise Suppression Network for Power Line Communication
This letter proposes a multi-features space domain fusion network (MFSDF-Net) to address impulsive noise suppression issues in power line communication (PLC) systems. As an end-to-end model, the proposed deep learning algorithm eliminates the need for designing null subcarriers in the original signals and fitting the data distribution at the receiver side. By utilizing parallel convolutional kernels to extract and fuse details from different domains of the signals, MFSDF-Net effectively captures dynamic changes. This enables it to more accurately and effectively identify and suppress impulsive noise, thus addressing the shortcomings of existing algorithms that inadequately identify impulsive noise and exhibit the bit error ratio (BER) floor effect. Simulation results show that with perfect channel estimation, the signal-to-noise ratio (SNR) at a BER of 1e-5 is 18 dB for this model, compared to 26 dB or higher for others, indicating an 8 dB improvement. With imperfect channel estimation, this model achieves an SNR of 30 dB at a BER of 1e-5, while other algorithms exhibit a BER floor effect.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Communications Letters
IEEE Communications Letters 工程技术-电信学
CiteScore
8.10
自引率
7.30%
发文量
590
审稿时长
2.8 months
期刊介绍: The IEEE Communications Letters publishes short papers in a rapid publication cycle on advances in the state-of-the-art of communication over different media and channels including wire, underground, waveguide, optical fiber, and storage channels. Both theoretical contributions (including new techniques, concepts, and analyses) and practical contributions (including system experiments and prototypes, and new applications) are encouraged. This journal focuses on the physical layer and the link layer of communication systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信