{"title":"用于应变和温度传感器的具有长期稳定性的坚固粘合型抗膨胀疏水离子凝胶","authors":"Yu Zhang, Yuanna Sun, Jiahang Yang, Ruobing Tian, Jiahao Liu, Xueming Tang, junbo wang, Qingshan Li","doi":"10.1039/d4ta06181k","DOIUrl":null,"url":null,"abstract":"With the growing attention brought by wearable electronic devices, flexible sensors, as a fundamental component, are emerging as the focal point. However, achieving long-term stability and precise sensing underwater remain two significant challenges that urgently need to be addressed for sensors. In this study, we designed a hydrophobic ionogel (MCS) with good stretchability (720%), excellent wet adhesion, prolonged stability and anti-swelling capability. These remarkable advantages make ionogels stand out as strain sensors. The ionogels exhibit extraordinary signal sensing abilities. In specific, they can capture subtle physiological activities of the human body with precision and sensitivity both in air or underwater. Besides, the satisfactory thermosensitivity (-2.02%/ºC), high resolution (0.1 ºC) and fast response (14 s) ensure that the ionogel becomes a qualified temperature sensor. By integrating with a wireless Bluetooth transmission system, the real-time body temperature can be monitored by a smart cellphone. This work demonstrates great potential of MCS ionogel in marine exploitation and wearable health monitoring.","PeriodicalId":82,"journal":{"name":"Journal of Materials Chemistry A","volume":"153 1","pages":""},"PeriodicalIF":10.7000,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A robust and adhesive anti-swelling hydrophobic ionogel with prolonged stability for strain and temperature sensors\",\"authors\":\"Yu Zhang, Yuanna Sun, Jiahang Yang, Ruobing Tian, Jiahao Liu, Xueming Tang, junbo wang, Qingshan Li\",\"doi\":\"10.1039/d4ta06181k\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the growing attention brought by wearable electronic devices, flexible sensors, as a fundamental component, are emerging as the focal point. However, achieving long-term stability and precise sensing underwater remain two significant challenges that urgently need to be addressed for sensors. In this study, we designed a hydrophobic ionogel (MCS) with good stretchability (720%), excellent wet adhesion, prolonged stability and anti-swelling capability. These remarkable advantages make ionogels stand out as strain sensors. The ionogels exhibit extraordinary signal sensing abilities. In specific, they can capture subtle physiological activities of the human body with precision and sensitivity both in air or underwater. Besides, the satisfactory thermosensitivity (-2.02%/ºC), high resolution (0.1 ºC) and fast response (14 s) ensure that the ionogel becomes a qualified temperature sensor. By integrating with a wireless Bluetooth transmission system, the real-time body temperature can be monitored by a smart cellphone. This work demonstrates great potential of MCS ionogel in marine exploitation and wearable health monitoring.\",\"PeriodicalId\":82,\"journal\":{\"name\":\"Journal of Materials Chemistry A\",\"volume\":\"153 1\",\"pages\":\"\"},\"PeriodicalIF\":10.7000,\"publicationDate\":\"2024-11-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Chemistry A\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1039/d4ta06181k\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Chemistry A","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1039/d4ta06181k","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
A robust and adhesive anti-swelling hydrophobic ionogel with prolonged stability for strain and temperature sensors
With the growing attention brought by wearable electronic devices, flexible sensors, as a fundamental component, are emerging as the focal point. However, achieving long-term stability and precise sensing underwater remain two significant challenges that urgently need to be addressed for sensors. In this study, we designed a hydrophobic ionogel (MCS) with good stretchability (720%), excellent wet adhesion, prolonged stability and anti-swelling capability. These remarkable advantages make ionogels stand out as strain sensors. The ionogels exhibit extraordinary signal sensing abilities. In specific, they can capture subtle physiological activities of the human body with precision and sensitivity both in air or underwater. Besides, the satisfactory thermosensitivity (-2.02%/ºC), high resolution (0.1 ºC) and fast response (14 s) ensure that the ionogel becomes a qualified temperature sensor. By integrating with a wireless Bluetooth transmission system, the real-time body temperature can be monitored by a smart cellphone. This work demonstrates great potential of MCS ionogel in marine exploitation and wearable health monitoring.
期刊介绍:
The Journal of Materials Chemistry A, B & C covers a wide range of high-quality studies in the field of materials chemistry, with each section focusing on specific applications of the materials studied. Journal of Materials Chemistry A emphasizes applications in energy and sustainability, including topics such as artificial photosynthesis, batteries, and fuel cells. Journal of Materials Chemistry B focuses on applications in biology and medicine, while Journal of Materials Chemistry C covers applications in optical, magnetic, and electronic devices. Example topic areas within the scope of Journal of Materials Chemistry A include catalysis, green/sustainable materials, sensors, and water treatment, among others.