{"title":"PCNet:基于增量学习的人体姿势补偿网络,用于运动动作估算","authors":"Jia-Hong Jiang, Nan Xia","doi":"10.1007/s40747-024-01647-1","DOIUrl":null,"url":null,"abstract":"<p>Human pose estimation has a wide range of applications. Existing methods perform well in conventional domains, but there are certain defects when they are applied to sports activities. The first is lack of estimation of the extremity posture, making it impossible to comprehensively evaluate the movement posture; the second is insufficient occlusion handling. Therefore, we propose a human pose compensation network based on incremental learning, which obtains shared weights to extract detailed features under the premise of limited extremity training data. We propose a higher-order feature compensator (HOF-compensator) to embed the attributes of the extremity into the torso and limbs topology structure, building a complete higher-order feature. In addition, to improve the occlusion handling performance, we propose an occlusion feature enhancement attention mechanism (OFE-attention) that can identify occluded keypoints and enhance attention to occlusion areas. We design comparative experiments on three public datasets and a self-built sports dataset, achieving the highest mean accuracy among all comparative methods. In addition, we design a series of ablation analysis and visualization displays to verify that our method performs best in sports pose estimation.</p>","PeriodicalId":10524,"journal":{"name":"Complex & Intelligent Systems","volume":"14 1","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"PCNet: a human pose compensation network based on incremental learning for sports actions estimation\",\"authors\":\"Jia-Hong Jiang, Nan Xia\",\"doi\":\"10.1007/s40747-024-01647-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Human pose estimation has a wide range of applications. Existing methods perform well in conventional domains, but there are certain defects when they are applied to sports activities. The first is lack of estimation of the extremity posture, making it impossible to comprehensively evaluate the movement posture; the second is insufficient occlusion handling. Therefore, we propose a human pose compensation network based on incremental learning, which obtains shared weights to extract detailed features under the premise of limited extremity training data. We propose a higher-order feature compensator (HOF-compensator) to embed the attributes of the extremity into the torso and limbs topology structure, building a complete higher-order feature. In addition, to improve the occlusion handling performance, we propose an occlusion feature enhancement attention mechanism (OFE-attention) that can identify occluded keypoints and enhance attention to occlusion areas. We design comparative experiments on three public datasets and a self-built sports dataset, achieving the highest mean accuracy among all comparative methods. In addition, we design a series of ablation analysis and visualization displays to verify that our method performs best in sports pose estimation.</p>\",\"PeriodicalId\":10524,\"journal\":{\"name\":\"Complex & Intelligent Systems\",\"volume\":\"14 1\",\"pages\":\"\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2024-11-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Complex & Intelligent Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s40747-024-01647-1\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Complex & Intelligent Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s40747-024-01647-1","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
PCNet: a human pose compensation network based on incremental learning for sports actions estimation
Human pose estimation has a wide range of applications. Existing methods perform well in conventional domains, but there are certain defects when they are applied to sports activities. The first is lack of estimation of the extremity posture, making it impossible to comprehensively evaluate the movement posture; the second is insufficient occlusion handling. Therefore, we propose a human pose compensation network based on incremental learning, which obtains shared weights to extract detailed features under the premise of limited extremity training data. We propose a higher-order feature compensator (HOF-compensator) to embed the attributes of the extremity into the torso and limbs topology structure, building a complete higher-order feature. In addition, to improve the occlusion handling performance, we propose an occlusion feature enhancement attention mechanism (OFE-attention) that can identify occluded keypoints and enhance attention to occlusion areas. We design comparative experiments on three public datasets and a self-built sports dataset, achieving the highest mean accuracy among all comparative methods. In addition, we design a series of ablation analysis and visualization displays to verify that our method performs best in sports pose estimation.
期刊介绍:
Complex & Intelligent Systems aims to provide a forum for presenting and discussing novel approaches, tools and techniques meant for attaining a cross-fertilization between the broad fields of complex systems, computational simulation, and intelligent analytics and visualization. The transdisciplinary research that the journal focuses on will expand the boundaries of our understanding by investigating the principles and processes that underlie many of the most profound problems facing society today.