{"title":"相关无序对神户晶格超导性的影响:波哥留布夫-德-热分析","authors":"Ravi Kiran, Sudipta Biswas, Monodeep Chakraborty","doi":"10.1103/physrevb.110.184506","DOIUrl":null,"url":null,"abstract":"This paper investigates the superconducting properties of a two-dimensional <mjx-container ctxtmenu_counter=\"78\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math data-semantic-structure=\"0\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-role=\"latinletter\" data-semantic-speech=\"s\" data-semantic-type=\"identifier\"><mjx-c>𝑠</mjx-c></mjx-mi></mjx-math></mjx-container>-wave superconductor on a kagome lattice subjected to correlated disorder. Using the Bogoliubov–de Gennes theory, we analyze the impact of disorder correlations on superconducting behavior. Additionally, we derive the stiffness formula for the kagome lattice and calculate its superfluid stiffness. An intriguing finding of our paper is the bimodal characteristic in the probability distribution of the superconducting pairing amplitude at higher disorder correlation strengths for intermediate values of the disordered potential. Our results provide valuable insights into how disorder correlations influence superconductivity and underscore the role of lattice geometry in shaping superconducting properties.","PeriodicalId":20082,"journal":{"name":"Physical Review B","volume":"5 1","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of correlated disorder on superconductivity in a kagome lattice: A Bogoliubov–de Gennes analysis\",\"authors\":\"Ravi Kiran, Sudipta Biswas, Monodeep Chakraborty\",\"doi\":\"10.1103/physrevb.110.184506\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper investigates the superconducting properties of a two-dimensional <mjx-container ctxtmenu_counter=\\\"78\\\" ctxtmenu_oldtabindex=\\\"1\\\" jax=\\\"CHTML\\\" overflow=\\\"linebreak\\\" role=\\\"tree\\\" sre-explorer- style=\\\"font-size: 100.7%;\\\" tabindex=\\\"0\\\"><mjx-math data-semantic-structure=\\\"0\\\"><mjx-mi data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic- data-semantic-role=\\\"latinletter\\\" data-semantic-speech=\\\"s\\\" data-semantic-type=\\\"identifier\\\"><mjx-c>𝑠</mjx-c></mjx-mi></mjx-math></mjx-container>-wave superconductor on a kagome lattice subjected to correlated disorder. Using the Bogoliubov–de Gennes theory, we analyze the impact of disorder correlations on superconducting behavior. Additionally, we derive the stiffness formula for the kagome lattice and calculate its superfluid stiffness. An intriguing finding of our paper is the bimodal characteristic in the probability distribution of the superconducting pairing amplitude at higher disorder correlation strengths for intermediate values of the disordered potential. Our results provide valuable insights into how disorder correlations influence superconductivity and underscore the role of lattice geometry in shaping superconducting properties.\",\"PeriodicalId\":20082,\"journal\":{\"name\":\"Physical Review B\",\"volume\":\"5 1\",\"pages\":\"\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Review B\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/physrevb.110.184506\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review B","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevb.110.184506","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
Effect of correlated disorder on superconductivity in a kagome lattice: A Bogoliubov–de Gennes analysis
This paper investigates the superconducting properties of a two-dimensional 𝑠-wave superconductor on a kagome lattice subjected to correlated disorder. Using the Bogoliubov–de Gennes theory, we analyze the impact of disorder correlations on superconducting behavior. Additionally, we derive the stiffness formula for the kagome lattice and calculate its superfluid stiffness. An intriguing finding of our paper is the bimodal characteristic in the probability distribution of the superconducting pairing amplitude at higher disorder correlation strengths for intermediate values of the disordered potential. Our results provide valuable insights into how disorder correlations influence superconductivity and underscore the role of lattice geometry in shaping superconducting properties.
期刊介绍:
Physical Review B (PRB) is the world’s largest dedicated physics journal, publishing approximately 100 new, high-quality papers each week. The most highly cited journal in condensed matter physics, PRB provides outstanding depth and breadth of coverage, combined with unrivaled context and background for ongoing research by scientists worldwide.
PRB covers the full range of condensed matter, materials physics, and related subfields, including:
-Structure and phase transitions
-Ferroelectrics and multiferroics
-Disordered systems and alloys
-Magnetism
-Superconductivity
-Electronic structure, photonics, and metamaterials
-Semiconductors and mesoscopic systems
-Surfaces, nanoscience, and two-dimensional materials
-Topological states of matter