共变带限标量场中的位置性和纠缠收获

IF 5 2区 物理与天体物理 Q1 Physics and Astronomy
Nicholas Funai, Nicolas C. Menicucci
{"title":"共变带限标量场中的位置性和纠缠收获","authors":"Nicholas Funai, Nicolas C. Menicucci","doi":"10.1103/physrevd.110.105001","DOIUrl":null,"url":null,"abstract":"Considerations of high energies in quantum field theories on smooth manifolds have led to generalized uncertainty principles and the possibility of a physical minimal length in quantum gravitational scenarios. In these models, the minimal length would be a physical limit, not just a mathematical tool, and should be Lorentz invariant. In this paper, we study two-qubit communication and entanglement harvesting in a field subject to a covariant bandlimit (minimum length) and present the changes induced by this bandlimit. We find the bandlimit introduces nonlocality and acausal communication in a manner unlike noncovariant bandlimits or other quantum optical approximations. We also observe that this covariant bandlimit introduces uncertainties in time and temporal ordering with the unusual behavior attributed to the behavior of virtual particles being modified by the covariant cutoff.","PeriodicalId":20167,"journal":{"name":"Physical Review D","volume":"95 1","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Locality and entanglement harvesting in covariantly bandlimited scalar fields\",\"authors\":\"Nicholas Funai, Nicolas C. Menicucci\",\"doi\":\"10.1103/physrevd.110.105001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Considerations of high energies in quantum field theories on smooth manifolds have led to generalized uncertainty principles and the possibility of a physical minimal length in quantum gravitational scenarios. In these models, the minimal length would be a physical limit, not just a mathematical tool, and should be Lorentz invariant. In this paper, we study two-qubit communication and entanglement harvesting in a field subject to a covariant bandlimit (minimum length) and present the changes induced by this bandlimit. We find the bandlimit introduces nonlocality and acausal communication in a manner unlike noncovariant bandlimits or other quantum optical approximations. We also observe that this covariant bandlimit introduces uncertainties in time and temporal ordering with the unusual behavior attributed to the behavior of virtual particles being modified by the covariant cutoff.\",\"PeriodicalId\":20167,\"journal\":{\"name\":\"Physical Review D\",\"volume\":\"95 1\",\"pages\":\"\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2024-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Review D\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/physrevd.110.105001\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review D","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevd.110.105001","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0

摘要

对光滑流形上的量子场论中的高能量的考虑,导致了广义不确定性原理和量子引力情景中物理最小长度的可能性。在这些模型中,最小长度将是一个物理极限,而不仅仅是一个数学工具,并且应该是洛伦兹不变的。在本文中,我们研究了受协变带限(最小长度)影响的场中的双量子比特通信和纠缠捕获,并介绍了带限引起的变化。我们发现带限引入了非局域性和无因通信,其方式不同于非共变带限或其他量子光学近似。我们还观察到,这种协变带限引入了时间和时间排序的不确定性,这种不寻常的行为归因于虚拟粒子的行为被协变截止所改变。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Locality and entanglement harvesting in covariantly bandlimited scalar fields
Considerations of high energies in quantum field theories on smooth manifolds have led to generalized uncertainty principles and the possibility of a physical minimal length in quantum gravitational scenarios. In these models, the minimal length would be a physical limit, not just a mathematical tool, and should be Lorentz invariant. In this paper, we study two-qubit communication and entanglement harvesting in a field subject to a covariant bandlimit (minimum length) and present the changes induced by this bandlimit. We find the bandlimit introduces nonlocality and acausal communication in a manner unlike noncovariant bandlimits or other quantum optical approximations. We also observe that this covariant bandlimit introduces uncertainties in time and temporal ordering with the unusual behavior attributed to the behavior of virtual particles being modified by the covariant cutoff.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physical Review D
Physical Review D 物理-天文与天体物理
CiteScore
9.20
自引率
36.00%
发文量
0
审稿时长
2 months
期刊介绍: Physical Review D (PRD) is a leading journal in elementary particle physics, field theory, gravitation, and cosmology and is one of the top-cited journals in high-energy physics. PRD covers experimental and theoretical results in all aspects of particle physics, field theory, gravitation and cosmology, including: Particle physics experiments, Electroweak interactions, Strong interactions, Lattice field theories, lattice QCD, Beyond the standard model physics, Phenomenological aspects of field theory, general methods, Gravity, cosmology, cosmic rays, Astrophysics and astroparticle physics, General relativity, Formal aspects of field theory, field theory in curved space, String theory, quantum gravity, gauge/gravity duality.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信