中子星磁层中引力波的共振转换

IF 5 2区 物理与天体物理 Q1 Physics and Astronomy
Jamie I. McDonald, Sebastian A. R. Ellis
{"title":"中子星磁层中引力波的共振转换","authors":"Jamie I. McDonald, Sebastian A. R. Ellis","doi":"10.1103/physrevd.110.103003","DOIUrl":null,"url":null,"abstract":"High-frequency gravitational waves are the subject of rapidly growing interest in the theoretical and experimental community. In this work we calculate the resonant conversion of gravitational waves into photons in the magnetospheres of neutron stars via the inverse Gertsenshtein mechanism. The resonance occurs in regions where the vacuum birefringence effects cancel the classical plasma contribution to the photon dispersion relation, leading to a massless photon in the medium which becomes kinematically matched to the graviton. We set limits on the amplitude of a possible stochastic background of gravitational waves using X-ray and IR flux measurements of neutron stars. Using Chandra (2–8 keV) and NuSTAR (3–79 keV) observations of RX J1856.6-3754, we set strain limits <mjx-container ctxtmenu_counter=\"28\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math breakable=\"true\" data-semantic-children=\"4,17\" data-semantic-content=\"5\" data-semantic- data-semantic-owns=\"4 5 17\" data-semantic-role=\"equality\" data-semantic-speech=\"h Subscript c Superscript limit Baseline asymptotically equals 10 Superscript negative 26 Baseline en dash 10 Superscript negative 24\" data-semantic-structure=\"(18 (4 (3 0 1) 2) 5 (17 (10 6 (9 7 8)) 11 (16 12 (15 13 14))))\" data-semantic-type=\"relseq\"><mjx-msubsup data-semantic-children=\"0,1,2\" data-semantic-collapsed=\"(4 (3 0 1) 2)\" data-semantic- data-semantic-owns=\"0 1 2\" data-semantic-parent=\"18\" data-semantic-role=\"latinletter\" data-semantic-type=\"subsup\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"4\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c>ℎ</mjx-c></mjx-mi><mjx-script style=\"vertical-align: -0.247em; margin-left: 0px;\"><mjx-mi data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"4\" data-semantic-role=\"limit function\" data-semantic-type=\"function\" size=\"s\"><mjx-c noic=\"true\" style=\"padding-top: 0.706em;\">l</mjx-c><mjx-c noic=\"true\" style=\"padding-top: 0.706em;\">i</mjx-c><mjx-c style=\"padding-top: 0.706em;\">m</mjx-c></mjx-mi><mjx-spacer style=\"margin-top: 0.271em;\"></mjx-spacer><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"4\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\" size=\"s\"><mjx-c>𝑐</mjx-c></mjx-mi></mjx-script></mjx-msubsup><mjx-break size=\"4\"></mjx-break><mjx-mo data-semantic- data-semantic-operator=\"relseq,≃\" data-semantic-parent=\"18\" data-semantic-role=\"equality\" data-semantic-type=\"relation\"><mjx-c>≃</mjx-c></mjx-mo><mjx-mrow data-semantic-added=\"true\" data-semantic-children=\"10,16\" data-semantic-content=\"11\" data-semantic- data-semantic-owns=\"10 11 16\" data-semantic-parent=\"18\" data-semantic-role=\"dash\" data-semantic-type=\"infixop\" space=\"4\"><mjx-msup data-semantic-children=\"6,9\" data-semantic- data-semantic-owns=\"6 9\" data-semantic-parent=\"17\" data-semantic-role=\"integer\" data-semantic-type=\"superscript\"><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"10\" data-semantic-role=\"integer\" data-semantic-type=\"number\"><mjx-c noic=\"true\" style=\"padding-top: 0.642em;\">1</mjx-c><mjx-c style=\"padding-top: 0.642em;\">0</mjx-c></mjx-mn><mjx-script style=\"vertical-align: 0.369em;\"><mjx-mrow data-semantic-annotation=\"clearspeak:simple\" data-semantic-children=\"8\" data-semantic-content=\"7\" data-semantic- data-semantic-owns=\"7 8\" data-semantic-parent=\"10\" data-semantic-role=\"negative\" data-semantic-type=\"prefixop\" size=\"s\"><mjx-mo data-semantic- data-semantic-operator=\"prefixop,−\" data-semantic-parent=\"9\" data-semantic-role=\"subtraction\" data-semantic-type=\"operator\"><mjx-c>−</mjx-c></mjx-mo><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"9\" data-semantic-role=\"integer\" data-semantic-type=\"number\"><mjx-c noic=\"true\" style=\"padding-top: 0.646em;\">2</mjx-c><mjx-c style=\"padding-top: 0.646em;\">6</mjx-c></mjx-mn></mjx-mrow></mjx-script></mjx-msup><mjx-mi data-semantic- data-semantic-operator=\"infixop,–\" data-semantic-parent=\"17\" data-semantic-role=\"dash\" data-semantic-type=\"operator\"><mjx-c>–</mjx-c></mjx-mi><mjx-msup data-semantic-children=\"12,15\" data-semantic- data-semantic-owns=\"12 15\" data-semantic-parent=\"17\" data-semantic-role=\"integer\" data-semantic-type=\"superscript\"><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"16\" data-semantic-role=\"integer\" data-semantic-type=\"number\"><mjx-c noic=\"true\" style=\"padding-top: 0.642em;\">1</mjx-c><mjx-c style=\"padding-top: 0.642em;\">0</mjx-c></mjx-mn><mjx-script style=\"vertical-align: 0.369em;\"><mjx-mrow data-semantic-annotation=\"clearspeak:simple\" data-semantic-children=\"14\" data-semantic-content=\"13\" data-semantic- data-semantic-owns=\"13 14\" data-semantic-parent=\"16\" data-semantic-role=\"negative\" data-semantic-type=\"prefixop\" size=\"s\"><mjx-mo data-semantic- data-semantic-operator=\"prefixop,−\" data-semantic-parent=\"15\" data-semantic-role=\"subtraction\" data-semantic-type=\"operator\"><mjx-c>−</mjx-c></mjx-mo><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"15\" data-semantic-role=\"integer\" data-semantic-type=\"number\"><mjx-c noic=\"true\" style=\"padding-top: 0.645em;\">2</mjx-c><mjx-c style=\"padding-top: 0.645em;\">4</mjx-c></mjx-mn></mjx-mrow></mjx-script></mjx-msup></mjx-mrow></mjx-math></mjx-container> in the frequency range <mjx-container ctxtmenu_counter=\"29\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math breakable=\"true\" data-semantic-children=\"19,5,6,21,16,17,18\" data-semantic-collapsed=\"(28 (c 22 23 24 25 26 27) 19 5 6 21 16 17 18)\" data-semantic- data-semantic-owns=\"19 5 6 21 16 17 18\" data-semantic-role=\"text\" data-semantic-speech=\"5 times 10 Superscript 17 Baseline upper H z less than or equivalent to f less than or equivalent to 2 times 10 Superscript 19 Baseline upper H z\" data-semantic-structure=\"(28 (19 0 1 (4 2 3)) 5 6 (21 7 8 9 10 (20 11 12 (15 13 14))) 16 17 18)\" data-semantic-type=\"punctuated\"><mjx-mrow data-semantic-added=\"true\" data-semantic-children=\"0,4\" data-semantic-content=\"1\" data-semantic- data-semantic-owns=\"0 1 4\" data-semantic-parent=\"28\" data-semantic-role=\"multiplication\" data-semantic-type=\"infixop\" inline-breaks=\"true\"><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"19\" data-semantic-role=\"integer\" data-semantic-type=\"number\"><mjx-c>5</mjx-c></mjx-mn><mjx-break size=\"3\"></mjx-break><mjx-mo data-semantic- data-semantic-operator=\"infixop,×\" data-semantic-parent=\"19\" data-semantic-role=\"multiplication\" data-semantic-type=\"operator\"><mjx-c>×</mjx-c></mjx-mo><mjx-msup data-semantic-children=\"2,3\" data-semantic- data-semantic-owns=\"2 3\" data-semantic-parent=\"19\" data-semantic-role=\"integer\" data-semantic-type=\"superscript\" space=\"3\"><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"4\" data-semantic-role=\"integer\" data-semantic-type=\"number\"><mjx-c noic=\"true\" style=\"padding-top: 0.642em;\">1</mjx-c><mjx-c style=\"padding-top: 0.642em;\">0</mjx-c></mjx-mn><mjx-script style=\"vertical-align: 0.369em;\"><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"4\" data-semantic-role=\"integer\" data-semantic-type=\"number\" size=\"s\"><mjx-c noic=\"true\" style=\"padding-top: 0.639em;\">1</mjx-c><mjx-c style=\"padding-top: 0.639em;\">7</mjx-c></mjx-mn></mjx-script></mjx-msup></mjx-mrow><mjx-mtext data-semantic-annotation=\"clearspeak:unit\" data-semantic- data-semantic-parent=\"28\" data-semantic-role=\"space\" data-semantic-type=\"text\" style='font-family: MJX-STX-ZERO, \"Helvetica Neue\", Helvetica, Roboto, Arial, sans-serif;'><mjx-utext style=\"font-size: 90.6%; padding: 0.828em 0px 0.221em; width: 3px;\" variant=\"-explicitFont\"> </mjx-utext></mjx-mtext><mjx-mtext data-semantic-annotation=\"clearspeak:unit\" data-semantic- data-semantic-parent=\"28\" data-semantic-role=\"space\" data-semantic-type=\"text\" style='font-family: MJX-STX-ZERO, \"Helvetica Neue\", Helvetica, Roboto, Arial, sans-serif;'><mjx-utext style=\"font-size: 90.6%; padding: 0.828em 0px 0.221em; width: 3px;\" variant=\"-explicitFont\"> </mjx-utext></mjx-mtext><mjx-mrow data-semantic-added=\"true\" data-semantic-children=\"7,9,20\" data-semantic-content=\"8,10\" data-semantic- data-semantic-owns=\"7 8 9 10 20\" data-semantic-parent=\"28\" data-semantic-role=\"inequality\" data-semantic-type=\"relseq\" inline-breaks=\"true\"><mjx-mi data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"21\" data-semantic-role=\"unknown\" data-semantic-type=\"identifier\"><mjx-c noic=\"true\" style=\"padding-top: 0.657em;\">H</mjx-c><mjx-c style=\"padding-top: 0.657em;\">z</mjx-c></mjx-mi><mjx-break size=\"4\"></mjx-break><mjx-mo data-semantic- data-semantic-operator=\"relseq,≲\" data-semantic-parent=\"21\" data-semantic-role=\"inequality\" data-semantic-type=\"relation\"><mjx-c>≲</mjx-c></mjx-mo><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"21\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\" space=\"4\"><mjx-c>𝑓</mjx-c></mjx-mi><mjx-break size=\"4\"></mjx-break><mjx-mo data-semantic- data-semantic-operator=\"relseq,≲\" data-semantic-parent=\"21\" data-semantic-role=\"inequality\" data-semantic-type=\"relation\"><mjx-c>≲</mjx-c></mjx-mo><mjx-mrow data-semantic-added=\"true\" data-semantic-children=\"11,15\" data-semantic-content=\"12\" data-semantic- data-semantic-owns=\"11 12 15\" data-semantic-parent=\"21\" data-semantic-role=\"multiplication\" data-semantic-type=\"infixop\" inline-breaks=\"true\" space=\"4\"><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"20\" data-semantic-role=\"integer\" data-semantic-type=\"number\"><mjx-c>2</mjx-c></mjx-mn><mjx-break size=\"3\"></mjx-break><mjx-mo data-semantic- data-semantic-operator=\"infixop,×\" data-semantic-parent=\"20\" data-semantic-role=\"multiplication\" data-semantic-type=\"operator\"><mjx-c>×</mjx-c></mjx-mo><mjx-msup data-semantic-children=\"13,14\" data-semantic- data-semantic-owns=\"13 14\" data-semantic-parent=\"20\" data-semantic-role=\"integer\" data-semantic-type=\"superscript\" space=\"3\"><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"15\" data-semantic-role=\"integer\" data-semantic-type=\"number\"><mjx-c noic=\"true\" style=\"padding-top: 0.642em;\">1</mjx-c><mjx-c style=\"padding-top: 0.642em;\">0</mjx-c></mjx-mn><mjx-script style=\"vertical-align: 0.369em;\"><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"15\" data-semantic-role=\"integer\" data-semantic-type=\"number\" size=\"s\"><mjx-c noic=\"true\" style=\"padding-top: 0.646em;\">1</mjx-c><mjx-c style=\"padding-top: 0.646em;\">9</mjx-c></mjx-mn></mjx-script></mjx-msup></mjx-mrow></mjx-mrow><mjx-mtext data-semantic-annotation=\"clearspeak:unit\" data-semantic- data-semantic-parent=\"28\" data-semantic-role=\"space\" data-semantic-type=\"text\" style='font-family: MJX-STX-ZERO, \"Helvetica Neue\", Helvetica, Roboto, Arial, sans-serif;'><mjx-utext style=\"font-size: 90.6%; padding: 0.828em 0px 0.221em; width: 3px;\" variant=\"-explicitFont\"> </mjx-utext></mjx-mtext><mjx-mtext data-semantic-annotation=\"clearspeak:unit\" data-semantic- data-semantic-parent=\"28\" data-semantic-role=\"space\" data-semantic-type=\"text\" style='font-family: MJX-STX-ZERO, \"Helvetica Neue\", Helvetica, Roboto, Arial, sans-serif;'><mjx-utext style=\"font-size: 90.6%; padding: 0.828em 0px 0.221em; width: 3px;\" variant=\"-explicitFont\"> </mjx-utext></mjx-mtext><mjx-mi data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"28\" data-semantic-role=\"unknown\" data-semantic-type=\"identifier\" space=\"2\"><mjx-c noic=\"true\" style=\"padding-top: 0.657em;\">H</mjx-c><mjx-c style=\"padding-top: 0.657em;\">z</mjx-c></mjx-mi></mjx-math></mjx-container>. Our limits are many orders of magnitude stronger than existing constraints from individual neutron stars at the same frequencies. We also use recent JWST observations of the Magnetar 4U <mjx-container ctxtmenu_counter=\"30\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math data-semantic-structure=\"(3 0 1 2)\"><mjx-mrow data-semantic-children=\"0,2\" data-semantic-content=\"1\" data-semantic- data-semantic-owns=\"0 1 2\" data-semantic-role=\"addition\" data-semantic-speech=\"0142 plus 61\" data-semantic-type=\"infixop\"><mjx-mn data-semantic-annotation=\"general:basenumber;clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"3\" data-semantic-role=\"integer\" data-semantic-type=\"number\"><mjx-c noic=\"true\" style=\"padding-top: 0.645em;\">0</mjx-c><mjx-c noic=\"true\" style=\"padding-top: 0.645em;\">1</mjx-c><mjx-c noic=\"true\" style=\"padding-top: 0.645em;\">4</mjx-c><mjx-c style=\"padding-top: 0.645em;\">2</mjx-c></mjx-mn><mjx-mo data-semantic- data-semantic-operator=\"infixop,+\" data-semantic-parent=\"3\" data-semantic-role=\"addition\" data-semantic-type=\"operator\" space=\"3\"><mjx-c>+</mjx-c></mjx-mo><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"3\" data-semantic-role=\"integer\" data-semantic-type=\"number\" space=\"3\"><mjx-c noic=\"true\" style=\"padding-top: 0.646em;\">6</mjx-c><mjx-c style=\"padding-top: 0.646em;\">1</mjx-c></mjx-mn></mjx-mrow></mjx-math></mjx-container> in the range <mjx-container ctxtmenu_counter=\"31\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math breakable=\"true\" data-semantic-children=\"19,5,6,21,16,17,18\" data-semantic-collapsed=\"(28 (c 22 23 24 25 26 27) 19 5 6 21 16 17 18)\" data-semantic- data-semantic-owns=\"19 5 6 21 16 17 18\" data-semantic-role=\"text\" data-semantic-speech=\"2.7 times 10 Superscript 13 Baseline upper H z less than or equivalent to f less than or equivalent to 5.9 times 10 Superscript 13 Baseline upper H z\" data-semantic-structure=\"(28 (19 0 1 (4 2 3)) 5 6 (21 7 8 9 10 (20 11 12 (15 13 14))) 16 17 18)\" data-semantic-type=\"punctuated\"><mjx-mrow data-semantic-added=\"true\" data-semantic-children=\"0,4\" data-semantic-content=\"1\" data-semantic- data-semantic-owns=\"0 1 4\" data-semantic-parent=\"28\" data-semantic-role=\"multiplication\" data-semantic-type=\"infixop\" inline-breaks=\"true\"><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"19\" data-semantic-role=\"float\" data-semantic-type=\"number\"><mjx-c noic=\"true\" style=\"padding-top: 0.644em;\">2</mjx-c><mjx-c noic=\"true\" style=\"padding-top: 0.644em;\">.</mjx-c><mjx-c style=\"padding-top: 0.644em;\">7</mjx-c></mjx-mn><mjx-break size=\"3\"></mjx-break><mjx-mo data-semantic- data-semantic-operator=\"infixop,×\" data-semantic-parent=\"19\" data-semantic-role=\"multiplication\" data-semantic-type=\"operator\"><mjx-c>×</mjx-c></mjx-mo><mjx-msup data-semantic-children=\"2,3\" data-semantic- data-semantic-owns=\"2 3\" data-semantic-parent=\"19\" data-semantic-role=\"integer\" data-semantic-type=\"superscript\" space=\"3\"><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"4\" data-semantic-role=\"integer\" data-semantic-type=\"number\"><mjx-c noic=\"true\" style=\"padding-top: 0.642em;\">1</mjx-c><mjx-c style=\"padding-top: 0.642em;\">0</mjx-c></mjx-mn><mjx-script style=\"vertical-align: 0.369em;\"><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"4\" data-semantic-role=\"integer\" data-semantic-type=\"number\" size=\"s\"><mjx-c noic=\"true\" style=\"padding-top: 0.644em;\">1</mjx-c><mjx-c style=\"padding-top: 0.644em;\">3</mjx-c></mjx-mn></mjx-script></mjx-msup></mjx-mrow><mjx-mtext data-semantic-annotation=\"clearspeak:unit\" data-semantic- data-semantic-parent=\"28\" data-semantic-role=\"space\" data-semantic-type=\"text\" style='font-family: MJX-STX-ZERO, \"Helvetica Neue\", Helvetica, Roboto, Arial, sans-serif;'><mjx-utext style=\"font-size: 90.6%; padding: 0.828em 0px 0.221em; width: 3px;\" variant=\"-explicitFont\"> </mjx-utext></mjx-mtext><mjx-mtext data-semantic-annotation=\"clearspeak:unit\" data-semantic- data-semantic-parent=\"28\" data-semantic-role=\"space\" data-semantic-type=\"text\" style='font-family: MJX-STX-ZERO, \"Helvetica Neue\", Helvetica, Roboto, Arial, sans-serif;'><mjx-utext style=\"font-size: 90.6%; padding: 0.828em 0px 0.221em; width: 3px;\" variant=\"-explicitFont\"> </mjx-utext></mjx-mtext><mjx-mrow data-semantic-added=\"true\" data-semantic-children=\"7,9,20\" data-semantic-content=\"8,10\" data-semantic- data-semantic-owns=\"7 8 9 10 20\" data-semantic-parent=\"28\" data-semantic-role=\"inequality\" data-semantic-type=\"relseq\" inline-breaks=\"true\"><mjx-mi data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"21\" data-semantic-role=\"unknown\" data-semantic-type=\"identifier\"><mjx-c noic=\"true\" style=\"padding-top: 0.657em;\">H</mjx-c><mjx-c style=\"padding-top: 0.657em;\">z</mjx-c></mjx-mi><mjx-break size=\"4\"></mjx-break><mjx-mo data-semantic- data-semantic-operator=\"relseq,≲\" data-semantic-parent=\"21\" data-semantic-role=\"inequality\" data-semantic-type=\"relation\"><mjx-c>≲</mjx-c></mjx-mo><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"21\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\" space=\"4\"><mjx-c>𝑓</mjx-c></mjx-mi><mjx-break size=\"4\"></mjx-break><mjx-mo data-semantic- data-semantic-operator=\"relseq,≲\" data-semantic-parent=\"21\" data-semantic-role=\"inequality\" data-semantic-type=\"relation\"><mjx-c>≲</mjx-c></mjx-mo><mjx-mrow data-semantic-added=\"true\" data-semantic-children=\"11,15\" data-semantic-content=\"12\" data-semantic- data-semantic-owns=\"11 12 15\" data-semantic-parent=\"21\" data-semantic-role=\"multiplication\" data-semantic-type=\"infixop\" inline-breaks=\"true\" space=\"4\"><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"20\" data-semantic-role=\"float\" data-semantic-type=\"number\"><mjx-c noic=\"true\" style=\"padding-top: 0.646em;\">5</mjx-c><mjx-c noic=\"true\" style=\"padding-top: 0.646em;\">.</mjx-c><mjx-c style=\"padding-top: 0.646em;\">9</mjx-c></mjx-mn><mjx-break size=\"3\"></mjx-break><mjx-mo data-semantic- data-semantic-operator=\"infixop,×\" data-semantic-parent=\"20\" data-semantic-role=\"multiplication\" data-semantic-type=\"operator\"><mjx-c>×</mjx-c></mjx-mo><mjx-msup data-semantic-children=\"13,14\" data-semantic- data-semantic-owns=\"13 14\" data-semantic-parent=\"20\" data-semantic-role=\"integer\" data-semantic-type=\"superscript\" space=\"3\"><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"15\" data-semantic-role=\"integer\" data-semantic-type=\"number\"><mjx-c noic=\"true\" style=\"padding-top: 0.642em;\">1</mjx-c><mjx-c style=\"padding-top: 0.642em;\">0</mjx-c></mjx-mn><mjx-script style=\"vertical-align: 0.369em;\"><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"15\" data-semantic-role=\"integer\" data-semantic-type=\"number\" size=\"s\"><mjx-c noic=\"true\" style=\"padding-top: 0.644em;\">1</mjx-c><mjx-c style=\"padding-top: 0.644em;\">3</mjx-c></mjx-mn></mjx-script></mjx-msup></mjx-mrow></mjx-mrow><mjx-mtext data-semantic-annotation=\"clearspeak:unit\" data-semantic- data-semantic-parent=\"28\" data-semantic-role=\"space\" data-semantic-type=\"text\" style='font-family: MJX-STX-ZERO, \"Helvetica Neue\", Helvetica, Roboto, Arial, sans-serif;'><mjx-utext style=\"font-size: 90.6%; padding: 0.828em 0px 0.221em; width: 3px;\" variant=\"-explicitFont\"> </mjx-utext></mjx-mtext><mjx-mtext data-semantic-annotation=\"clearspeak:unit\" data-semantic- data-semantic-parent=\"28\" data-semantic-role=\"space\" data-semantic-type=\"text\" style='font-family: MJX-STX-ZERO, \"Helvetica Neue\", Helvetica, Roboto, Arial, sans-serif;'><mjx-utext style=\"font-size: 90.6%; padding: 0.828em 0px 0.221em; width: 3px;\" variant=\"-explicitFont\"> </mjx-utext></mjx-mtext><mjx-mi data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"28\" data-semantic-role=\"unknown\" data-semantic-type=\"identifier\" space=\"2\"><mjx-c noic=\"true\" style=\"padding-top: 0.657em;\">H</mjx-c><mjx-c style=\"padding-top: 0.657em;\">z</mjx-c></mjx-mi></mjx-math></mjx-container>, setting a limit <mjx-container ctxtmenu_counter=\"32\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math breakable=\"true\" data-semantic-children=\"4,13\" data-semantic-content=\"5\" data-semantic- data-semantic-owns=\"4 5 13\" data-semantic-role=\"equality\" data-semantic-speech=\"h Subscript normal c Superscript limit Baseline asymptotically equals 5 times 10 Superscript negative 19\" data-semantic-structure=\"(14 (4 (3 0 1) 2) 5 (13 6 7 (12 8 (11 9 10))))\" data-semantic-type=\"relseq\"><mjx-msubsup data-semantic-children=\"0,1,2\" data-semantic-collapsed=\"(4 (3 0 1) 2)\" data-semantic- data-semantic-owns=\"0 1 2\" data-semantic-parent=\"14\" data-semantic-role=\"latinletter\" data-semantic-type=\"subsup\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"4\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c>ℎ</mjx-c></mjx-mi><mjx-script style=\"vertical-align: -0.247em; margin-left: 0px;\"><mjx-mi data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"4\" data-semantic-role=\"limit function\" data-semantic-type=\"function\" size=\"s\"><mjx-c noic=\"true\" style=\"padding-top: 0.706em;\">l</mjx-c><mjx-c noic=\"true\" style=\"padding-top: 0.706em;\">i</mjx-c><mjx-c style=\"padding-top: 0.706em;\">m</mjx-c></mjx-mi><mjx-spacer style=\"margin-top: 0.267em;\"></mjx-spacer><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"4\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\" size=\"s\"><mjx-c>c</mjx-c></mjx-mi></mjx-script></mjx-msubsup><mjx-break size=\"4\"></mjx-break><mjx-mo data-semantic- data-semantic-operator=\"relseq,≃\" data-semantic-parent=\"14\" data-semantic-role=\"equality\" data-semantic-type=\"relation\"><mjx-c>≃</mjx-c></mjx-mo><mjx-mrow data-semantic-added=\"true\" data-semantic-children=\"6,12\" data-semantic-content=\"7\" data-semantic- data-semantic-owns=\"6 7 12\" data-semantic-parent=\"14\" data-semantic-role=\"multiplication\" data-semantic-type=\"infixop\" inline-breaks=\"true\" space=\"4\"><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"13\" data-semantic-role=\"integer\" data-semantic-type=\"number\"><mjx-c>5</mjx-c></mjx-mn><mjx-break size=\"3\"></mjx-break><mjx-mo data-semantic- data-semantic-operator=\"infixop,×\" data-semantic-parent=\"13\" data-semantic-role=\"multiplication\" data-semantic-type=\"operator\"><mjx-c>×</mjx-c></mjx-mo><mjx-msup data-semantic-children=\"8,11\" data-semantic- data-semantic-owns=\"8 11\" data-semantic-parent=\"13\" data-semantic-role=\"integer\" data-semantic-type=\"superscript\" space=\"3\"><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"12\" data-semantic-role=\"integer\" data-semantic-type=\"number\"><mjx-c noic=\"true\" style=\"padding-top: 0.642em;\">1</mjx-c><mjx-c style=\"padding-top: 0.642em;\">0</mjx-c></mjx-mn><mjx-script style=\"vertical-align: 0.369em;\"><mjx-mrow data-semantic-annotation=\"clearspeak:simple\" data-semantic-children=\"10\" data-semantic-content=\"9\" data-semantic- data-semantic-owns=\"9 10\" data-semantic-parent=\"12\" data-semantic-role=\"negative\" data-semantic-type=\"prefixop\" size=\"s\"><mjx-mo data-semantic- data-semantic-operator=\"prefixop,−\" data-semantic-parent=\"11\" data-semantic-role=\"subtraction\" data-semantic-type=\"operator\"><mjx-c>−</mjx-c></mjx-mo><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"11\" data-semantic-role=\"integer\" data-semantic-type=\"number\"><mjx-c noic=\"true\" style=\"padding-top: 0.646em;\">1</mjx-c><mjx-c style=\"padding-top: 0.646em;\">9</mjx-c></mjx-mn></mjx-mrow></mjx-script></mjx-msup></mjx-mrow></mjx-math></mjx-container>. These constraints are in complementary frequency ranges to laboratory searches with CAST, OSQAR and ALPS II. We expect these limits to be improved both in reach and breadth with a more exhaustive use of telescope data across the full spectrum of frequencies and targets.","PeriodicalId":20167,"journal":{"name":"Physical Review D","volume":"3 1","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Resonant conversion of gravitational waves in neutron star magnetospheres\",\"authors\":\"Jamie I. McDonald, Sebastian A. R. Ellis\",\"doi\":\"10.1103/physrevd.110.103003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"High-frequency gravitational waves are the subject of rapidly growing interest in the theoretical and experimental community. In this work we calculate the resonant conversion of gravitational waves into photons in the magnetospheres of neutron stars via the inverse Gertsenshtein mechanism. The resonance occurs in regions where the vacuum birefringence effects cancel the classical plasma contribution to the photon dispersion relation, leading to a massless photon in the medium which becomes kinematically matched to the graviton. We set limits on the amplitude of a possible stochastic background of gravitational waves using X-ray and IR flux measurements of neutron stars. Using Chandra (2–8 keV) and NuSTAR (3–79 keV) observations of RX J1856.6-3754, we set strain limits <mjx-container ctxtmenu_counter=\\\"28\\\" ctxtmenu_oldtabindex=\\\"1\\\" jax=\\\"CHTML\\\" overflow=\\\"linebreak\\\" role=\\\"tree\\\" sre-explorer- style=\\\"font-size: 100.7%;\\\" tabindex=\\\"0\\\"><mjx-math breakable=\\\"true\\\" data-semantic-children=\\\"4,17\\\" data-semantic-content=\\\"5\\\" data-semantic- data-semantic-owns=\\\"4 5 17\\\" data-semantic-role=\\\"equality\\\" data-semantic-speech=\\\"h Subscript c Superscript limit Baseline asymptotically equals 10 Superscript negative 26 Baseline en dash 10 Superscript negative 24\\\" data-semantic-structure=\\\"(18 (4 (3 0 1) 2) 5 (17 (10 6 (9 7 8)) 11 (16 12 (15 13 14))))\\\" data-semantic-type=\\\"relseq\\\"><mjx-msubsup data-semantic-children=\\\"0,1,2\\\" data-semantic-collapsed=\\\"(4 (3 0 1) 2)\\\" data-semantic- data-semantic-owns=\\\"0 1 2\\\" data-semantic-parent=\\\"18\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-type=\\\"subsup\\\"><mjx-mi data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic- data-semantic-parent=\\\"4\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-type=\\\"identifier\\\"><mjx-c>ℎ</mjx-c></mjx-mi><mjx-script style=\\\"vertical-align: -0.247em; margin-left: 0px;\\\"><mjx-mi data-semantic-font=\\\"normal\\\" data-semantic- data-semantic-parent=\\\"4\\\" data-semantic-role=\\\"limit function\\\" data-semantic-type=\\\"function\\\" size=\\\"s\\\"><mjx-c noic=\\\"true\\\" style=\\\"padding-top: 0.706em;\\\">l</mjx-c><mjx-c noic=\\\"true\\\" style=\\\"padding-top: 0.706em;\\\">i</mjx-c><mjx-c style=\\\"padding-top: 0.706em;\\\">m</mjx-c></mjx-mi><mjx-spacer style=\\\"margin-top: 0.271em;\\\"></mjx-spacer><mjx-mi data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic- data-semantic-parent=\\\"4\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-type=\\\"identifier\\\" size=\\\"s\\\"><mjx-c>𝑐</mjx-c></mjx-mi></mjx-script></mjx-msubsup><mjx-break size=\\\"4\\\"></mjx-break><mjx-mo data-semantic- data-semantic-operator=\\\"relseq,≃\\\" data-semantic-parent=\\\"18\\\" data-semantic-role=\\\"equality\\\" data-semantic-type=\\\"relation\\\"><mjx-c>≃</mjx-c></mjx-mo><mjx-mrow data-semantic-added=\\\"true\\\" data-semantic-children=\\\"10,16\\\" data-semantic-content=\\\"11\\\" data-semantic- data-semantic-owns=\\\"10 11 16\\\" data-semantic-parent=\\\"18\\\" data-semantic-role=\\\"dash\\\" data-semantic-type=\\\"infixop\\\" space=\\\"4\\\"><mjx-msup data-semantic-children=\\\"6,9\\\" data-semantic- data-semantic-owns=\\\"6 9\\\" data-semantic-parent=\\\"17\\\" data-semantic-role=\\\"integer\\\" data-semantic-type=\\\"superscript\\\"><mjx-mn data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"normal\\\" data-semantic- data-semantic-parent=\\\"10\\\" data-semantic-role=\\\"integer\\\" data-semantic-type=\\\"number\\\"><mjx-c noic=\\\"true\\\" style=\\\"padding-top: 0.642em;\\\">1</mjx-c><mjx-c style=\\\"padding-top: 0.642em;\\\">0</mjx-c></mjx-mn><mjx-script style=\\\"vertical-align: 0.369em;\\\"><mjx-mrow data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-children=\\\"8\\\" data-semantic-content=\\\"7\\\" data-semantic- data-semantic-owns=\\\"7 8\\\" data-semantic-parent=\\\"10\\\" data-semantic-role=\\\"negative\\\" data-semantic-type=\\\"prefixop\\\" size=\\\"s\\\"><mjx-mo data-semantic- data-semantic-operator=\\\"prefixop,−\\\" data-semantic-parent=\\\"9\\\" data-semantic-role=\\\"subtraction\\\" data-semantic-type=\\\"operator\\\"><mjx-c>−</mjx-c></mjx-mo><mjx-mn data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"normal\\\" data-semantic- data-semantic-parent=\\\"9\\\" data-semantic-role=\\\"integer\\\" data-semantic-type=\\\"number\\\"><mjx-c noic=\\\"true\\\" style=\\\"padding-top: 0.646em;\\\">2</mjx-c><mjx-c style=\\\"padding-top: 0.646em;\\\">6</mjx-c></mjx-mn></mjx-mrow></mjx-script></mjx-msup><mjx-mi data-semantic- data-semantic-operator=\\\"infixop,–\\\" data-semantic-parent=\\\"17\\\" data-semantic-role=\\\"dash\\\" data-semantic-type=\\\"operator\\\"><mjx-c>–</mjx-c></mjx-mi><mjx-msup data-semantic-children=\\\"12,15\\\" data-semantic- data-semantic-owns=\\\"12 15\\\" data-semantic-parent=\\\"17\\\" data-semantic-role=\\\"integer\\\" data-semantic-type=\\\"superscript\\\"><mjx-mn data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"normal\\\" data-semantic- data-semantic-parent=\\\"16\\\" data-semantic-role=\\\"integer\\\" data-semantic-type=\\\"number\\\"><mjx-c noic=\\\"true\\\" style=\\\"padding-top: 0.642em;\\\">1</mjx-c><mjx-c style=\\\"padding-top: 0.642em;\\\">0</mjx-c></mjx-mn><mjx-script style=\\\"vertical-align: 0.369em;\\\"><mjx-mrow data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-children=\\\"14\\\" data-semantic-content=\\\"13\\\" data-semantic- data-semantic-owns=\\\"13 14\\\" data-semantic-parent=\\\"16\\\" data-semantic-role=\\\"negative\\\" data-semantic-type=\\\"prefixop\\\" size=\\\"s\\\"><mjx-mo data-semantic- data-semantic-operator=\\\"prefixop,−\\\" data-semantic-parent=\\\"15\\\" data-semantic-role=\\\"subtraction\\\" data-semantic-type=\\\"operator\\\"><mjx-c>−</mjx-c></mjx-mo><mjx-mn data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"normal\\\" data-semantic- data-semantic-parent=\\\"15\\\" data-semantic-role=\\\"integer\\\" data-semantic-type=\\\"number\\\"><mjx-c noic=\\\"true\\\" style=\\\"padding-top: 0.645em;\\\">2</mjx-c><mjx-c style=\\\"padding-top: 0.645em;\\\">4</mjx-c></mjx-mn></mjx-mrow></mjx-script></mjx-msup></mjx-mrow></mjx-math></mjx-container> in the frequency range <mjx-container ctxtmenu_counter=\\\"29\\\" ctxtmenu_oldtabindex=\\\"1\\\" jax=\\\"CHTML\\\" overflow=\\\"linebreak\\\" role=\\\"tree\\\" sre-explorer- style=\\\"font-size: 100.7%;\\\" tabindex=\\\"0\\\"><mjx-math breakable=\\\"true\\\" data-semantic-children=\\\"19,5,6,21,16,17,18\\\" data-semantic-collapsed=\\\"(28 (c 22 23 24 25 26 27) 19 5 6 21 16 17 18)\\\" data-semantic- data-semantic-owns=\\\"19 5 6 21 16 17 18\\\" data-semantic-role=\\\"text\\\" data-semantic-speech=\\\"5 times 10 Superscript 17 Baseline upper H z less than or equivalent to f less than or equivalent to 2 times 10 Superscript 19 Baseline upper H z\\\" data-semantic-structure=\\\"(28 (19 0 1 (4 2 3)) 5 6 (21 7 8 9 10 (20 11 12 (15 13 14))) 16 17 18)\\\" data-semantic-type=\\\"punctuated\\\"><mjx-mrow data-semantic-added=\\\"true\\\" data-semantic-children=\\\"0,4\\\" data-semantic-content=\\\"1\\\" data-semantic- data-semantic-owns=\\\"0 1 4\\\" data-semantic-parent=\\\"28\\\" data-semantic-role=\\\"multiplication\\\" data-semantic-type=\\\"infixop\\\" inline-breaks=\\\"true\\\"><mjx-mn data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"normal\\\" data-semantic- data-semantic-parent=\\\"19\\\" data-semantic-role=\\\"integer\\\" data-semantic-type=\\\"number\\\"><mjx-c>5</mjx-c></mjx-mn><mjx-break size=\\\"3\\\"></mjx-break><mjx-mo data-semantic- data-semantic-operator=\\\"infixop,×\\\" data-semantic-parent=\\\"19\\\" data-semantic-role=\\\"multiplication\\\" data-semantic-type=\\\"operator\\\"><mjx-c>×</mjx-c></mjx-mo><mjx-msup data-semantic-children=\\\"2,3\\\" data-semantic- data-semantic-owns=\\\"2 3\\\" data-semantic-parent=\\\"19\\\" data-semantic-role=\\\"integer\\\" data-semantic-type=\\\"superscript\\\" space=\\\"3\\\"><mjx-mn data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"normal\\\" data-semantic- data-semantic-parent=\\\"4\\\" data-semantic-role=\\\"integer\\\" data-semantic-type=\\\"number\\\"><mjx-c noic=\\\"true\\\" style=\\\"padding-top: 0.642em;\\\">1</mjx-c><mjx-c style=\\\"padding-top: 0.642em;\\\">0</mjx-c></mjx-mn><mjx-script style=\\\"vertical-align: 0.369em;\\\"><mjx-mn data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"normal\\\" data-semantic- data-semantic-parent=\\\"4\\\" data-semantic-role=\\\"integer\\\" data-semantic-type=\\\"number\\\" size=\\\"s\\\"><mjx-c noic=\\\"true\\\" style=\\\"padding-top: 0.639em;\\\">1</mjx-c><mjx-c style=\\\"padding-top: 0.639em;\\\">7</mjx-c></mjx-mn></mjx-script></mjx-msup></mjx-mrow><mjx-mtext data-semantic-annotation=\\\"clearspeak:unit\\\" data-semantic- data-semantic-parent=\\\"28\\\" data-semantic-role=\\\"space\\\" data-semantic-type=\\\"text\\\" style='font-family: MJX-STX-ZERO, \\\"Helvetica Neue\\\", Helvetica, Roboto, Arial, sans-serif;'><mjx-utext style=\\\"font-size: 90.6%; padding: 0.828em 0px 0.221em; width: 3px;\\\" variant=\\\"-explicitFont\\\"> </mjx-utext></mjx-mtext><mjx-mtext data-semantic-annotation=\\\"clearspeak:unit\\\" data-semantic- data-semantic-parent=\\\"28\\\" data-semantic-role=\\\"space\\\" data-semantic-type=\\\"text\\\" style='font-family: MJX-STX-ZERO, \\\"Helvetica Neue\\\", Helvetica, Roboto, Arial, sans-serif;'><mjx-utext style=\\\"font-size: 90.6%; padding: 0.828em 0px 0.221em; width: 3px;\\\" variant=\\\"-explicitFont\\\"> </mjx-utext></mjx-mtext><mjx-mrow data-semantic-added=\\\"true\\\" data-semantic-children=\\\"7,9,20\\\" data-semantic-content=\\\"8,10\\\" data-semantic- data-semantic-owns=\\\"7 8 9 10 20\\\" data-semantic-parent=\\\"28\\\" data-semantic-role=\\\"inequality\\\" data-semantic-type=\\\"relseq\\\" inline-breaks=\\\"true\\\"><mjx-mi data-semantic-font=\\\"normal\\\" data-semantic- data-semantic-parent=\\\"21\\\" data-semantic-role=\\\"unknown\\\" data-semantic-type=\\\"identifier\\\"><mjx-c noic=\\\"true\\\" style=\\\"padding-top: 0.657em;\\\">H</mjx-c><mjx-c style=\\\"padding-top: 0.657em;\\\">z</mjx-c></mjx-mi><mjx-break size=\\\"4\\\"></mjx-break><mjx-mo data-semantic- data-semantic-operator=\\\"relseq,≲\\\" data-semantic-parent=\\\"21\\\" data-semantic-role=\\\"inequality\\\" data-semantic-type=\\\"relation\\\"><mjx-c>≲</mjx-c></mjx-mo><mjx-mi data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic- data-semantic-parent=\\\"21\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-type=\\\"identifier\\\" space=\\\"4\\\"><mjx-c>𝑓</mjx-c></mjx-mi><mjx-break size=\\\"4\\\"></mjx-break><mjx-mo data-semantic- data-semantic-operator=\\\"relseq,≲\\\" data-semantic-parent=\\\"21\\\" data-semantic-role=\\\"inequality\\\" data-semantic-type=\\\"relation\\\"><mjx-c>≲</mjx-c></mjx-mo><mjx-mrow data-semantic-added=\\\"true\\\" data-semantic-children=\\\"11,15\\\" data-semantic-content=\\\"12\\\" data-semantic- data-semantic-owns=\\\"11 12 15\\\" data-semantic-parent=\\\"21\\\" data-semantic-role=\\\"multiplication\\\" data-semantic-type=\\\"infixop\\\" inline-breaks=\\\"true\\\" space=\\\"4\\\"><mjx-mn data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"normal\\\" data-semantic- data-semantic-parent=\\\"20\\\" data-semantic-role=\\\"integer\\\" data-semantic-type=\\\"number\\\"><mjx-c>2</mjx-c></mjx-mn><mjx-break size=\\\"3\\\"></mjx-break><mjx-mo data-semantic- data-semantic-operator=\\\"infixop,×\\\" data-semantic-parent=\\\"20\\\" data-semantic-role=\\\"multiplication\\\" data-semantic-type=\\\"operator\\\"><mjx-c>×</mjx-c></mjx-mo><mjx-msup data-semantic-children=\\\"13,14\\\" data-semantic- data-semantic-owns=\\\"13 14\\\" data-semantic-parent=\\\"20\\\" data-semantic-role=\\\"integer\\\" data-semantic-type=\\\"superscript\\\" space=\\\"3\\\"><mjx-mn data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"normal\\\" data-semantic- data-semantic-parent=\\\"15\\\" data-semantic-role=\\\"integer\\\" data-semantic-type=\\\"number\\\"><mjx-c noic=\\\"true\\\" style=\\\"padding-top: 0.642em;\\\">1</mjx-c><mjx-c style=\\\"padding-top: 0.642em;\\\">0</mjx-c></mjx-mn><mjx-script style=\\\"vertical-align: 0.369em;\\\"><mjx-mn data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"normal\\\" data-semantic- data-semantic-parent=\\\"15\\\" data-semantic-role=\\\"integer\\\" data-semantic-type=\\\"number\\\" size=\\\"s\\\"><mjx-c noic=\\\"true\\\" style=\\\"padding-top: 0.646em;\\\">1</mjx-c><mjx-c style=\\\"padding-top: 0.646em;\\\">9</mjx-c></mjx-mn></mjx-script></mjx-msup></mjx-mrow></mjx-mrow><mjx-mtext data-semantic-annotation=\\\"clearspeak:unit\\\" data-semantic- data-semantic-parent=\\\"28\\\" data-semantic-role=\\\"space\\\" data-semantic-type=\\\"text\\\" style='font-family: MJX-STX-ZERO, \\\"Helvetica Neue\\\", Helvetica, Roboto, Arial, sans-serif;'><mjx-utext style=\\\"font-size: 90.6%; padding: 0.828em 0px 0.221em; width: 3px;\\\" variant=\\\"-explicitFont\\\"> </mjx-utext></mjx-mtext><mjx-mtext data-semantic-annotation=\\\"clearspeak:unit\\\" data-semantic- data-semantic-parent=\\\"28\\\" data-semantic-role=\\\"space\\\" data-semantic-type=\\\"text\\\" style='font-family: MJX-STX-ZERO, \\\"Helvetica Neue\\\", Helvetica, Roboto, Arial, sans-serif;'><mjx-utext style=\\\"font-size: 90.6%; padding: 0.828em 0px 0.221em; width: 3px;\\\" variant=\\\"-explicitFont\\\"> </mjx-utext></mjx-mtext><mjx-mi data-semantic-font=\\\"normal\\\" data-semantic- data-semantic-parent=\\\"28\\\" data-semantic-role=\\\"unknown\\\" data-semantic-type=\\\"identifier\\\" space=\\\"2\\\"><mjx-c noic=\\\"true\\\" style=\\\"padding-top: 0.657em;\\\">H</mjx-c><mjx-c style=\\\"padding-top: 0.657em;\\\">z</mjx-c></mjx-mi></mjx-math></mjx-container>. Our limits are many orders of magnitude stronger than existing constraints from individual neutron stars at the same frequencies. We also use recent JWST observations of the Magnetar 4U <mjx-container ctxtmenu_counter=\\\"30\\\" ctxtmenu_oldtabindex=\\\"1\\\" jax=\\\"CHTML\\\" overflow=\\\"linebreak\\\" role=\\\"tree\\\" sre-explorer- style=\\\"font-size: 100.7%;\\\" tabindex=\\\"0\\\"><mjx-math data-semantic-structure=\\\"(3 0 1 2)\\\"><mjx-mrow data-semantic-children=\\\"0,2\\\" data-semantic-content=\\\"1\\\" data-semantic- data-semantic-owns=\\\"0 1 2\\\" data-semantic-role=\\\"addition\\\" data-semantic-speech=\\\"0142 plus 61\\\" data-semantic-type=\\\"infixop\\\"><mjx-mn data-semantic-annotation=\\\"general:basenumber;clearspeak:simple\\\" data-semantic-font=\\\"normal\\\" data-semantic- data-semantic-parent=\\\"3\\\" data-semantic-role=\\\"integer\\\" data-semantic-type=\\\"number\\\"><mjx-c noic=\\\"true\\\" style=\\\"padding-top: 0.645em;\\\">0</mjx-c><mjx-c noic=\\\"true\\\" style=\\\"padding-top: 0.645em;\\\">1</mjx-c><mjx-c noic=\\\"true\\\" style=\\\"padding-top: 0.645em;\\\">4</mjx-c><mjx-c style=\\\"padding-top: 0.645em;\\\">2</mjx-c></mjx-mn><mjx-mo data-semantic- data-semantic-operator=\\\"infixop,+\\\" data-semantic-parent=\\\"3\\\" data-semantic-role=\\\"addition\\\" data-semantic-type=\\\"operator\\\" space=\\\"3\\\"><mjx-c>+</mjx-c></mjx-mo><mjx-mn data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"normal\\\" data-semantic- data-semantic-parent=\\\"3\\\" data-semantic-role=\\\"integer\\\" data-semantic-type=\\\"number\\\" space=\\\"3\\\"><mjx-c noic=\\\"true\\\" style=\\\"padding-top: 0.646em;\\\">6</mjx-c><mjx-c style=\\\"padding-top: 0.646em;\\\">1</mjx-c></mjx-mn></mjx-mrow></mjx-math></mjx-container> in the range <mjx-container ctxtmenu_counter=\\\"31\\\" ctxtmenu_oldtabindex=\\\"1\\\" jax=\\\"CHTML\\\" overflow=\\\"linebreak\\\" role=\\\"tree\\\" sre-explorer- style=\\\"font-size: 100.7%;\\\" tabindex=\\\"0\\\"><mjx-math breakable=\\\"true\\\" data-semantic-children=\\\"19,5,6,21,16,17,18\\\" data-semantic-collapsed=\\\"(28 (c 22 23 24 25 26 27) 19 5 6 21 16 17 18)\\\" data-semantic- data-semantic-owns=\\\"19 5 6 21 16 17 18\\\" data-semantic-role=\\\"text\\\" data-semantic-speech=\\\"2.7 times 10 Superscript 13 Baseline upper H z less than or equivalent to f less than or equivalent to 5.9 times 10 Superscript 13 Baseline upper H z\\\" data-semantic-structure=\\\"(28 (19 0 1 (4 2 3)) 5 6 (21 7 8 9 10 (20 11 12 (15 13 14))) 16 17 18)\\\" data-semantic-type=\\\"punctuated\\\"><mjx-mrow data-semantic-added=\\\"true\\\" data-semantic-children=\\\"0,4\\\" data-semantic-content=\\\"1\\\" data-semantic- data-semantic-owns=\\\"0 1 4\\\" data-semantic-parent=\\\"28\\\" data-semantic-role=\\\"multiplication\\\" data-semantic-type=\\\"infixop\\\" inline-breaks=\\\"true\\\"><mjx-mn data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"normal\\\" data-semantic- data-semantic-parent=\\\"19\\\" data-semantic-role=\\\"float\\\" data-semantic-type=\\\"number\\\"><mjx-c noic=\\\"true\\\" style=\\\"padding-top: 0.644em;\\\">2</mjx-c><mjx-c noic=\\\"true\\\" style=\\\"padding-top: 0.644em;\\\">.</mjx-c><mjx-c style=\\\"padding-top: 0.644em;\\\">7</mjx-c></mjx-mn><mjx-break size=\\\"3\\\"></mjx-break><mjx-mo data-semantic- data-semantic-operator=\\\"infixop,×\\\" data-semantic-parent=\\\"19\\\" data-semantic-role=\\\"multiplication\\\" data-semantic-type=\\\"operator\\\"><mjx-c>×</mjx-c></mjx-mo><mjx-msup data-semantic-children=\\\"2,3\\\" data-semantic- data-semantic-owns=\\\"2 3\\\" data-semantic-parent=\\\"19\\\" data-semantic-role=\\\"integer\\\" data-semantic-type=\\\"superscript\\\" space=\\\"3\\\"><mjx-mn data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"normal\\\" data-semantic- data-semantic-parent=\\\"4\\\" data-semantic-role=\\\"integer\\\" data-semantic-type=\\\"number\\\"><mjx-c noic=\\\"true\\\" style=\\\"padding-top: 0.642em;\\\">1</mjx-c><mjx-c style=\\\"padding-top: 0.642em;\\\">0</mjx-c></mjx-mn><mjx-script style=\\\"vertical-align: 0.369em;\\\"><mjx-mn data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"normal\\\" data-semantic- data-semantic-parent=\\\"4\\\" data-semantic-role=\\\"integer\\\" data-semantic-type=\\\"number\\\" size=\\\"s\\\"><mjx-c noic=\\\"true\\\" style=\\\"padding-top: 0.644em;\\\">1</mjx-c><mjx-c style=\\\"padding-top: 0.644em;\\\">3</mjx-c></mjx-mn></mjx-script></mjx-msup></mjx-mrow><mjx-mtext data-semantic-annotation=\\\"clearspeak:unit\\\" data-semantic- data-semantic-parent=\\\"28\\\" data-semantic-role=\\\"space\\\" data-semantic-type=\\\"text\\\" style='font-family: MJX-STX-ZERO, \\\"Helvetica Neue\\\", Helvetica, Roboto, Arial, sans-serif;'><mjx-utext style=\\\"font-size: 90.6%; padding: 0.828em 0px 0.221em; width: 3px;\\\" variant=\\\"-explicitFont\\\"> </mjx-utext></mjx-mtext><mjx-mtext data-semantic-annotation=\\\"clearspeak:unit\\\" data-semantic- data-semantic-parent=\\\"28\\\" data-semantic-role=\\\"space\\\" data-semantic-type=\\\"text\\\" style='font-family: MJX-STX-ZERO, \\\"Helvetica Neue\\\", Helvetica, Roboto, Arial, sans-serif;'><mjx-utext style=\\\"font-size: 90.6%; padding: 0.828em 0px 0.221em; width: 3px;\\\" variant=\\\"-explicitFont\\\"> </mjx-utext></mjx-mtext><mjx-mrow data-semantic-added=\\\"true\\\" data-semantic-children=\\\"7,9,20\\\" data-semantic-content=\\\"8,10\\\" data-semantic- data-semantic-owns=\\\"7 8 9 10 20\\\" data-semantic-parent=\\\"28\\\" data-semantic-role=\\\"inequality\\\" data-semantic-type=\\\"relseq\\\" inline-breaks=\\\"true\\\"><mjx-mi data-semantic-font=\\\"normal\\\" data-semantic- data-semantic-parent=\\\"21\\\" data-semantic-role=\\\"unknown\\\" data-semantic-type=\\\"identifier\\\"><mjx-c noic=\\\"true\\\" style=\\\"padding-top: 0.657em;\\\">H</mjx-c><mjx-c style=\\\"padding-top: 0.657em;\\\">z</mjx-c></mjx-mi><mjx-break size=\\\"4\\\"></mjx-break><mjx-mo data-semantic- data-semantic-operator=\\\"relseq,≲\\\" data-semantic-parent=\\\"21\\\" data-semantic-role=\\\"inequality\\\" data-semantic-type=\\\"relation\\\"><mjx-c>≲</mjx-c></mjx-mo><mjx-mi data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic- data-semantic-parent=\\\"21\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-type=\\\"identifier\\\" space=\\\"4\\\"><mjx-c>𝑓</mjx-c></mjx-mi><mjx-break size=\\\"4\\\"></mjx-break><mjx-mo data-semantic- data-semantic-operator=\\\"relseq,≲\\\" data-semantic-parent=\\\"21\\\" data-semantic-role=\\\"inequality\\\" data-semantic-type=\\\"relation\\\"><mjx-c>≲</mjx-c></mjx-mo><mjx-mrow data-semantic-added=\\\"true\\\" data-semantic-children=\\\"11,15\\\" data-semantic-content=\\\"12\\\" data-semantic- data-semantic-owns=\\\"11 12 15\\\" data-semantic-parent=\\\"21\\\" data-semantic-role=\\\"multiplication\\\" data-semantic-type=\\\"infixop\\\" inline-breaks=\\\"true\\\" space=\\\"4\\\"><mjx-mn data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"normal\\\" data-semantic- data-semantic-parent=\\\"20\\\" data-semantic-role=\\\"float\\\" data-semantic-type=\\\"number\\\"><mjx-c noic=\\\"true\\\" style=\\\"padding-top: 0.646em;\\\">5</mjx-c><mjx-c noic=\\\"true\\\" style=\\\"padding-top: 0.646em;\\\">.</mjx-c><mjx-c style=\\\"padding-top: 0.646em;\\\">9</mjx-c></mjx-mn><mjx-break size=\\\"3\\\"></mjx-break><mjx-mo data-semantic- data-semantic-operator=\\\"infixop,×\\\" data-semantic-parent=\\\"20\\\" data-semantic-role=\\\"multiplication\\\" data-semantic-type=\\\"operator\\\"><mjx-c>×</mjx-c></mjx-mo><mjx-msup data-semantic-children=\\\"13,14\\\" data-semantic- data-semantic-owns=\\\"13 14\\\" data-semantic-parent=\\\"20\\\" data-semantic-role=\\\"integer\\\" data-semantic-type=\\\"superscript\\\" space=\\\"3\\\"><mjx-mn data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"normal\\\" data-semantic- data-semantic-parent=\\\"15\\\" data-semantic-role=\\\"integer\\\" data-semantic-type=\\\"number\\\"><mjx-c noic=\\\"true\\\" style=\\\"padding-top: 0.642em;\\\">1</mjx-c><mjx-c style=\\\"padding-top: 0.642em;\\\">0</mjx-c></mjx-mn><mjx-script style=\\\"vertical-align: 0.369em;\\\"><mjx-mn data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"normal\\\" data-semantic- data-semantic-parent=\\\"15\\\" data-semantic-role=\\\"integer\\\" data-semantic-type=\\\"number\\\" size=\\\"s\\\"><mjx-c noic=\\\"true\\\" style=\\\"padding-top: 0.644em;\\\">1</mjx-c><mjx-c style=\\\"padding-top: 0.644em;\\\">3</mjx-c></mjx-mn></mjx-script></mjx-msup></mjx-mrow></mjx-mrow><mjx-mtext data-semantic-annotation=\\\"clearspeak:unit\\\" data-semantic- data-semantic-parent=\\\"28\\\" data-semantic-role=\\\"space\\\" data-semantic-type=\\\"text\\\" style='font-family: MJX-STX-ZERO, \\\"Helvetica Neue\\\", Helvetica, Roboto, Arial, sans-serif;'><mjx-utext style=\\\"font-size: 90.6%; padding: 0.828em 0px 0.221em; width: 3px;\\\" variant=\\\"-explicitFont\\\"> </mjx-utext></mjx-mtext><mjx-mtext data-semantic-annotation=\\\"clearspeak:unit\\\" data-semantic- data-semantic-parent=\\\"28\\\" data-semantic-role=\\\"space\\\" data-semantic-type=\\\"text\\\" style='font-family: MJX-STX-ZERO, \\\"Helvetica Neue\\\", Helvetica, Roboto, Arial, sans-serif;'><mjx-utext style=\\\"font-size: 90.6%; padding: 0.828em 0px 0.221em; width: 3px;\\\" variant=\\\"-explicitFont\\\"> </mjx-utext></mjx-mtext><mjx-mi data-semantic-font=\\\"normal\\\" data-semantic- data-semantic-parent=\\\"28\\\" data-semantic-role=\\\"unknown\\\" data-semantic-type=\\\"identifier\\\" space=\\\"2\\\"><mjx-c noic=\\\"true\\\" style=\\\"padding-top: 0.657em;\\\">H</mjx-c><mjx-c style=\\\"padding-top: 0.657em;\\\">z</mjx-c></mjx-mi></mjx-math></mjx-container>, setting a limit <mjx-container ctxtmenu_counter=\\\"32\\\" ctxtmenu_oldtabindex=\\\"1\\\" jax=\\\"CHTML\\\" overflow=\\\"linebreak\\\" role=\\\"tree\\\" sre-explorer- style=\\\"font-size: 100.7%;\\\" tabindex=\\\"0\\\"><mjx-math breakable=\\\"true\\\" data-semantic-children=\\\"4,13\\\" data-semantic-content=\\\"5\\\" data-semantic- data-semantic-owns=\\\"4 5 13\\\" data-semantic-role=\\\"equality\\\" data-semantic-speech=\\\"h Subscript normal c Superscript limit Baseline asymptotically equals 5 times 10 Superscript negative 19\\\" data-semantic-structure=\\\"(14 (4 (3 0 1) 2) 5 (13 6 7 (12 8 (11 9 10))))\\\" data-semantic-type=\\\"relseq\\\"><mjx-msubsup data-semantic-children=\\\"0,1,2\\\" data-semantic-collapsed=\\\"(4 (3 0 1) 2)\\\" data-semantic- data-semantic-owns=\\\"0 1 2\\\" data-semantic-parent=\\\"14\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-type=\\\"subsup\\\"><mjx-mi data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic- data-semantic-parent=\\\"4\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-type=\\\"identifier\\\"><mjx-c>ℎ</mjx-c></mjx-mi><mjx-script style=\\\"vertical-align: -0.247em; margin-left: 0px;\\\"><mjx-mi data-semantic-font=\\\"normal\\\" data-semantic- data-semantic-parent=\\\"4\\\" data-semantic-role=\\\"limit function\\\" data-semantic-type=\\\"function\\\" size=\\\"s\\\"><mjx-c noic=\\\"true\\\" style=\\\"padding-top: 0.706em;\\\">l</mjx-c><mjx-c noic=\\\"true\\\" style=\\\"padding-top: 0.706em;\\\">i</mjx-c><mjx-c style=\\\"padding-top: 0.706em;\\\">m</mjx-c></mjx-mi><mjx-spacer style=\\\"margin-top: 0.267em;\\\"></mjx-spacer><mjx-mi data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"normal\\\" data-semantic- data-semantic-parent=\\\"4\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-type=\\\"identifier\\\" size=\\\"s\\\"><mjx-c>c</mjx-c></mjx-mi></mjx-script></mjx-msubsup><mjx-break size=\\\"4\\\"></mjx-break><mjx-mo data-semantic- data-semantic-operator=\\\"relseq,≃\\\" data-semantic-parent=\\\"14\\\" data-semantic-role=\\\"equality\\\" data-semantic-type=\\\"relation\\\"><mjx-c>≃</mjx-c></mjx-mo><mjx-mrow data-semantic-added=\\\"true\\\" data-semantic-children=\\\"6,12\\\" data-semantic-content=\\\"7\\\" data-semantic- data-semantic-owns=\\\"6 7 12\\\" data-semantic-parent=\\\"14\\\" data-semantic-role=\\\"multiplication\\\" data-semantic-type=\\\"infixop\\\" inline-breaks=\\\"true\\\" space=\\\"4\\\"><mjx-mn data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"normal\\\" data-semantic- data-semantic-parent=\\\"13\\\" data-semantic-role=\\\"integer\\\" data-semantic-type=\\\"number\\\"><mjx-c>5</mjx-c></mjx-mn><mjx-break size=\\\"3\\\"></mjx-break><mjx-mo data-semantic- data-semantic-operator=\\\"infixop,×\\\" data-semantic-parent=\\\"13\\\" data-semantic-role=\\\"multiplication\\\" data-semantic-type=\\\"operator\\\"><mjx-c>×</mjx-c></mjx-mo><mjx-msup data-semantic-children=\\\"8,11\\\" data-semantic- data-semantic-owns=\\\"8 11\\\" data-semantic-parent=\\\"13\\\" data-semantic-role=\\\"integer\\\" data-semantic-type=\\\"superscript\\\" space=\\\"3\\\"><mjx-mn data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"normal\\\" data-semantic- data-semantic-parent=\\\"12\\\" data-semantic-role=\\\"integer\\\" data-semantic-type=\\\"number\\\"><mjx-c noic=\\\"true\\\" style=\\\"padding-top: 0.642em;\\\">1</mjx-c><mjx-c style=\\\"padding-top: 0.642em;\\\">0</mjx-c></mjx-mn><mjx-script style=\\\"vertical-align: 0.369em;\\\"><mjx-mrow data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-children=\\\"10\\\" data-semantic-content=\\\"9\\\" data-semantic- data-semantic-owns=\\\"9 10\\\" data-semantic-parent=\\\"12\\\" data-semantic-role=\\\"negative\\\" data-semantic-type=\\\"prefixop\\\" size=\\\"s\\\"><mjx-mo data-semantic- data-semantic-operator=\\\"prefixop,−\\\" data-semantic-parent=\\\"11\\\" data-semantic-role=\\\"subtraction\\\" data-semantic-type=\\\"operator\\\"><mjx-c>−</mjx-c></mjx-mo><mjx-mn data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"normal\\\" data-semantic- data-semantic-parent=\\\"11\\\" data-semantic-role=\\\"integer\\\" data-semantic-type=\\\"number\\\"><mjx-c noic=\\\"true\\\" style=\\\"padding-top: 0.646em;\\\">1</mjx-c><mjx-c style=\\\"padding-top: 0.646em;\\\">9</mjx-c></mjx-mn></mjx-mrow></mjx-script></mjx-msup></mjx-mrow></mjx-math></mjx-container>. These constraints are in complementary frequency ranges to laboratory searches with CAST, OSQAR and ALPS II. We expect these limits to be improved both in reach and breadth with a more exhaustive use of telescope data across the full spectrum of frequencies and targets.\",\"PeriodicalId\":20167,\"journal\":{\"name\":\"Physical Review D\",\"volume\":\"3 1\",\"pages\":\"\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2024-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Review D\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/physrevd.110.103003\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review D","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevd.110.103003","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0

摘要

理论界和实验界对高频引力波的兴趣与日俱增。在这项工作中,我们计算了引力波在中子星磁层中通过逆格尔岑什丁机制向光子的共振转换。共振发生在真空双折射效应抵消了经典等离子体对光子色散关系贡献的区域,导致介质中的无质量光子在运动学上与引力子相匹配。我们利用对中子星的 X 射线和红外通量测量,对引力波可能的随机背景的振幅设定了限制。利用钱德拉(2-8 keV)和NuSTAR(3-79 keV)对RX J1856.6-3754的观测,我们在5×1017 Hz≲𝑓≲2×1019 Hz的频率范围内设定了应变极限澄𝑐≃10-26-10-24。我们的限值比相同频率下单个中子星的现有约束强了许多数量级。我们还使用了 JWST 最近对磁星 4U 0142+61 在 2.7×1013 Hz≲𝑓≲5.9×1013 Hz 范围内的观测数据,设定了极限 limc≃5×10-19。这些限制与 CAST、OSQAR 和 ALPS II 的实验室搜索频率范围互补。我们预计,随着望远镜数据在整个频率和目标范围内得到更详尽的利用,这些限制的范围和广度都将得到改善。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Resonant conversion of gravitational waves in neutron star magnetospheres
High-frequency gravitational waves are the subject of rapidly growing interest in the theoretical and experimental community. In this work we calculate the resonant conversion of gravitational waves into photons in the magnetospheres of neutron stars via the inverse Gertsenshtein mechanism. The resonance occurs in regions where the vacuum birefringence effects cancel the classical plasma contribution to the photon dispersion relation, leading to a massless photon in the medium which becomes kinematically matched to the graviton. We set limits on the amplitude of a possible stochastic background of gravitational waves using X-ray and IR flux measurements of neutron stars. Using Chandra (2–8 keV) and NuSTAR (3–79 keV) observations of RX J1856.6-3754, we set strain limits lim𝑐10261024 in the frequency range 5×1017Hz𝑓2×1019Hz. Our limits are many orders of magnitude stronger than existing constraints from individual neutron stars at the same frequencies. We also use recent JWST observations of the Magnetar 4U 0142+61 in the range 2.7×1013Hz𝑓5.9×1013Hz, setting a limit limc5×1019. These constraints are in complementary frequency ranges to laboratory searches with CAST, OSQAR and ALPS II. We expect these limits to be improved both in reach and breadth with a more exhaustive use of telescope data across the full spectrum of frequencies and targets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physical Review D
Physical Review D 物理-天文与天体物理
CiteScore
9.20
自引率
36.00%
发文量
0
审稿时长
2 months
期刊介绍: Physical Review D (PRD) is a leading journal in elementary particle physics, field theory, gravitation, and cosmology and is one of the top-cited journals in high-energy physics. PRD covers experimental and theoretical results in all aspects of particle physics, field theory, gravitation and cosmology, including: Particle physics experiments, Electroweak interactions, Strong interactions, Lattice field theories, lattice QCD, Beyond the standard model physics, Phenomenological aspects of field theory, general methods, Gravity, cosmology, cosmic rays, Astrophysics and astroparticle physics, General relativity, Formal aspects of field theory, field theory in curved space, String theory, quantum gravity, gauge/gravity duality.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信