在二维空间实现希尔伯特空间分裂和分形动力学

IF 8.1 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY
Melissa Will, Roderich Moessner, Frank Pollmann
{"title":"在二维空间实现希尔伯特空间分裂和分形动力学","authors":"Melissa Will, Roderich Moessner, Frank Pollmann","doi":"10.1103/physrevlett.133.196301","DOIUrl":null,"url":null,"abstract":"We propose the strongly tilted Bose-Hubbard model as a natural platform to explore Hilbert-space fragmentation (HSF) and fracton dynamics in two dimensions in a setup and regime readily accessible in optical lattice experiments. Using a perturbative ansatz, we find HSF when the model is tuned to the resonant limit of on-site interaction and tilted potential. First, we investigate the quench dynamics of this system and observe numerically that the relaxation dynamics strongly depends on the chosen initial state—one of the key signatures of HSF. Second, we identify fractonic excitations with restricted mobility leading to anomalous transport properties. Specifically, we find excitations that show one-dimensional diffusion (<mjx-container ctxtmenu_counter=\"33\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math breakable=\"true\" data-semantic-children=\"0,5\" data-semantic-content=\"1\" data-semantic- data-semantic-owns=\"0 1 5\" data-semantic-role=\"equality\" data-semantic-speech=\"z equals 1 divided by 2\" data-semantic-structure=\"(6 0 1 (5 2 3 4))\" data-semantic-type=\"relseq\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"6\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c>𝑧</mjx-c></mjx-mi><mjx-break size=\"4\"></mjx-break><mjx-mo data-semantic- data-semantic-operator=\"relseq,=\" data-semantic-parent=\"6\" data-semantic-role=\"equality\" data-semantic-type=\"relation\"><mjx-c>=</mjx-c></mjx-mo><mjx-mrow data-semantic-added=\"true\" data-semantic-children=\"2,4\" data-semantic-content=\"3\" data-semantic- data-semantic-owns=\"2 3 4\" data-semantic-parent=\"6\" data-semantic-role=\"division\" data-semantic-type=\"infixop\" space=\"4\"><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"5\" data-semantic-role=\"integer\" data-semantic-type=\"number\"><mjx-c>1</mjx-c></mjx-mn><mjx-mo data-semantic- data-semantic-operator=\"infixop,/\" data-semantic-parent=\"5\" data-semantic-role=\"division\" data-semantic-type=\"operator\"><mjx-c>/</mjx-c></mjx-mo><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"5\" data-semantic-role=\"integer\" data-semantic-type=\"number\"><mjx-c>2</mjx-c></mjx-mn></mjx-mrow></mjx-math></mjx-container>) as well as excitations that show subdiffusive behavior in two dimensions (<mjx-container ctxtmenu_counter=\"34\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math breakable=\"true\" data-semantic-children=\"0,5\" data-semantic-content=\"1\" data-semantic- data-semantic-owns=\"0 1 5\" data-semantic-role=\"equality\" data-semantic-speech=\"z equals 3 divided by 4\" data-semantic-structure=\"(6 0 1 (5 2 3 4))\" data-semantic-type=\"relseq\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"6\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c>𝑧</mjx-c></mjx-mi><mjx-break size=\"4\"></mjx-break><mjx-mo data-semantic- data-semantic-operator=\"relseq,=\" data-semantic-parent=\"6\" data-semantic-role=\"equality\" data-semantic-type=\"relation\"><mjx-c>=</mjx-c></mjx-mo><mjx-mrow data-semantic-added=\"true\" data-semantic-children=\"2,4\" data-semantic-content=\"3\" data-semantic- data-semantic-owns=\"2 3 4\" data-semantic-parent=\"6\" data-semantic-role=\"division\" data-semantic-type=\"infixop\" space=\"4\"><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"5\" data-semantic-role=\"integer\" data-semantic-type=\"number\"><mjx-c>3</mjx-c></mjx-mn><mjx-mo data-semantic- data-semantic-operator=\"infixop,/\" data-semantic-parent=\"5\" data-semantic-role=\"division\" data-semantic-type=\"operator\"><mjx-c>/</mjx-c></mjx-mo><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"5\" data-semantic-role=\"integer\" data-semantic-type=\"number\"><mjx-c>4</mjx-c></mjx-mn></mjx-mrow></mjx-math></mjx-container>). Using a cellular automaton, we analyze their dynamics and compare it to an effective hydrodynamic description.","PeriodicalId":20069,"journal":{"name":"Physical review letters","volume":"68 1","pages":""},"PeriodicalIF":8.1000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Realization of Hilbert Space Fragmentation and Fracton Dynamics in Two Dimensions\",\"authors\":\"Melissa Will, Roderich Moessner, Frank Pollmann\",\"doi\":\"10.1103/physrevlett.133.196301\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose the strongly tilted Bose-Hubbard model as a natural platform to explore Hilbert-space fragmentation (HSF) and fracton dynamics in two dimensions in a setup and regime readily accessible in optical lattice experiments. Using a perturbative ansatz, we find HSF when the model is tuned to the resonant limit of on-site interaction and tilted potential. First, we investigate the quench dynamics of this system and observe numerically that the relaxation dynamics strongly depends on the chosen initial state—one of the key signatures of HSF. Second, we identify fractonic excitations with restricted mobility leading to anomalous transport properties. Specifically, we find excitations that show one-dimensional diffusion (<mjx-container ctxtmenu_counter=\\\"33\\\" ctxtmenu_oldtabindex=\\\"1\\\" jax=\\\"CHTML\\\" overflow=\\\"linebreak\\\" role=\\\"tree\\\" sre-explorer- style=\\\"font-size: 100.7%;\\\" tabindex=\\\"0\\\"><mjx-math breakable=\\\"true\\\" data-semantic-children=\\\"0,5\\\" data-semantic-content=\\\"1\\\" data-semantic- data-semantic-owns=\\\"0 1 5\\\" data-semantic-role=\\\"equality\\\" data-semantic-speech=\\\"z equals 1 divided by 2\\\" data-semantic-structure=\\\"(6 0 1 (5 2 3 4))\\\" data-semantic-type=\\\"relseq\\\"><mjx-mi data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic- data-semantic-parent=\\\"6\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-type=\\\"identifier\\\"><mjx-c>𝑧</mjx-c></mjx-mi><mjx-break size=\\\"4\\\"></mjx-break><mjx-mo data-semantic- data-semantic-operator=\\\"relseq,=\\\" data-semantic-parent=\\\"6\\\" data-semantic-role=\\\"equality\\\" data-semantic-type=\\\"relation\\\"><mjx-c>=</mjx-c></mjx-mo><mjx-mrow data-semantic-added=\\\"true\\\" data-semantic-children=\\\"2,4\\\" data-semantic-content=\\\"3\\\" data-semantic- data-semantic-owns=\\\"2 3 4\\\" data-semantic-parent=\\\"6\\\" data-semantic-role=\\\"division\\\" data-semantic-type=\\\"infixop\\\" space=\\\"4\\\"><mjx-mn data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"normal\\\" data-semantic- data-semantic-parent=\\\"5\\\" data-semantic-role=\\\"integer\\\" data-semantic-type=\\\"number\\\"><mjx-c>1</mjx-c></mjx-mn><mjx-mo data-semantic- data-semantic-operator=\\\"infixop,/\\\" data-semantic-parent=\\\"5\\\" data-semantic-role=\\\"division\\\" data-semantic-type=\\\"operator\\\"><mjx-c>/</mjx-c></mjx-mo><mjx-mn data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"normal\\\" data-semantic- data-semantic-parent=\\\"5\\\" data-semantic-role=\\\"integer\\\" data-semantic-type=\\\"number\\\"><mjx-c>2</mjx-c></mjx-mn></mjx-mrow></mjx-math></mjx-container>) as well as excitations that show subdiffusive behavior in two dimensions (<mjx-container ctxtmenu_counter=\\\"34\\\" ctxtmenu_oldtabindex=\\\"1\\\" jax=\\\"CHTML\\\" overflow=\\\"linebreak\\\" role=\\\"tree\\\" sre-explorer- style=\\\"font-size: 100.7%;\\\" tabindex=\\\"0\\\"><mjx-math breakable=\\\"true\\\" data-semantic-children=\\\"0,5\\\" data-semantic-content=\\\"1\\\" data-semantic- data-semantic-owns=\\\"0 1 5\\\" data-semantic-role=\\\"equality\\\" data-semantic-speech=\\\"z equals 3 divided by 4\\\" data-semantic-structure=\\\"(6 0 1 (5 2 3 4))\\\" data-semantic-type=\\\"relseq\\\"><mjx-mi data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic- data-semantic-parent=\\\"6\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-type=\\\"identifier\\\"><mjx-c>𝑧</mjx-c></mjx-mi><mjx-break size=\\\"4\\\"></mjx-break><mjx-mo data-semantic- data-semantic-operator=\\\"relseq,=\\\" data-semantic-parent=\\\"6\\\" data-semantic-role=\\\"equality\\\" data-semantic-type=\\\"relation\\\"><mjx-c>=</mjx-c></mjx-mo><mjx-mrow data-semantic-added=\\\"true\\\" data-semantic-children=\\\"2,4\\\" data-semantic-content=\\\"3\\\" data-semantic- data-semantic-owns=\\\"2 3 4\\\" data-semantic-parent=\\\"6\\\" data-semantic-role=\\\"division\\\" data-semantic-type=\\\"infixop\\\" space=\\\"4\\\"><mjx-mn data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"normal\\\" data-semantic- data-semantic-parent=\\\"5\\\" data-semantic-role=\\\"integer\\\" data-semantic-type=\\\"number\\\"><mjx-c>3</mjx-c></mjx-mn><mjx-mo data-semantic- data-semantic-operator=\\\"infixop,/\\\" data-semantic-parent=\\\"5\\\" data-semantic-role=\\\"division\\\" data-semantic-type=\\\"operator\\\"><mjx-c>/</mjx-c></mjx-mo><mjx-mn data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"normal\\\" data-semantic- data-semantic-parent=\\\"5\\\" data-semantic-role=\\\"integer\\\" data-semantic-type=\\\"number\\\"><mjx-c>4</mjx-c></mjx-mn></mjx-mrow></mjx-math></mjx-container>). Using a cellular automaton, we analyze their dynamics and compare it to an effective hydrodynamic description.\",\"PeriodicalId\":20069,\"journal\":{\"name\":\"Physical review letters\",\"volume\":\"68 1\",\"pages\":\"\"},\"PeriodicalIF\":8.1000,\"publicationDate\":\"2024-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical review letters\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/physrevlett.133.196301\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical review letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevlett.133.196301","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了强倾斜玻色-哈伯德模型,将其作为一个天然的平台,在光晶格实验中以容易获得的设置和机制探索二维中的希尔伯特空间碎片(HSF)和分形子动力学。利用微扰解析,当模型调整到现场相互作用和倾斜势的共振极限时,我们发现了 HSF。首先,我们研究了该系统的淬火动力学,并从数值上观察到弛豫动力学强烈依赖于所选的初始状态--这是 HSF 的关键特征之一。其次,我们发现了具有受限流动性的分形激元,这导致了反常的传输特性。具体来说,我们发现了显示一维扩散(𝑧=1/2)的激波,以及显示二维亚扩散行为(𝑧=3/4)的激波。我们使用细胞自动机分析了它们的动力学,并将其与有效的流体动力学描述进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Realization of Hilbert Space Fragmentation and Fracton Dynamics in Two Dimensions
We propose the strongly tilted Bose-Hubbard model as a natural platform to explore Hilbert-space fragmentation (HSF) and fracton dynamics in two dimensions in a setup and regime readily accessible in optical lattice experiments. Using a perturbative ansatz, we find HSF when the model is tuned to the resonant limit of on-site interaction and tilted potential. First, we investigate the quench dynamics of this system and observe numerically that the relaxation dynamics strongly depends on the chosen initial state—one of the key signatures of HSF. Second, we identify fractonic excitations with restricted mobility leading to anomalous transport properties. Specifically, we find excitations that show one-dimensional diffusion (𝑧=1/2) as well as excitations that show subdiffusive behavior in two dimensions (𝑧=3/4). Using a cellular automaton, we analyze their dynamics and compare it to an effective hydrodynamic description.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physical review letters
Physical review letters 物理-物理:综合
CiteScore
16.50
自引率
7.00%
发文量
2673
审稿时长
2.2 months
期刊介绍: Physical review letters(PRL)covers the full range of applied, fundamental, and interdisciplinary physics research topics: General physics, including statistical and quantum mechanics and quantum information Gravitation, astrophysics, and cosmology Elementary particles and fields Nuclear physics Atomic, molecular, and optical physics Nonlinear dynamics, fluid dynamics, and classical optics Plasma and beam physics Condensed matter and materials physics Polymers, soft matter, biological, climate and interdisciplinary physics, including networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信