顶点一般(倾斜)埃斯特拉达指数的库尔森型积分公式

IF 1 3区 数学 Q3 MATHEMATICS, APPLIED
Lu Qiao , Shenggui Zhang , Jing Li , Nan Gao
{"title":"顶点一般(倾斜)埃斯特拉达指数的库尔森型积分公式","authors":"Lu Qiao ,&nbsp;Shenggui Zhang ,&nbsp;Jing Li ,&nbsp;Nan Gao","doi":"10.1016/j.dam.2024.10.015","DOIUrl":null,"url":null,"abstract":"<div><div>Let <span><math><mi>G</mi></math></span> be a simple graph with vertex set <span><math><mrow><mi>V</mi><mo>=</mo><mrow><mo>{</mo><msub><mrow><mi>v</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>v</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>v</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>}</mo></mrow></mrow></math></span> and <span><math><mrow><msub><mrow><mi>λ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>λ</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>λ</mi></mrow><mrow><mi>n</mi></mrow></msub></mrow></math></span> the eigenvalues of the adjacency matrix <span><math><mi>A</mi></math></span> of <span><math><mi>G</mi></math></span>. The Estrada index of <span><math><mi>G</mi></math></span> is defined as <span><math><mrow><msubsup><mrow><mo>∑</mo></mrow><mrow><mi>k</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>n</mi></mrow></msubsup><msup><mrow><mi>e</mi></mrow><mrow><msub><mrow><mi>λ</mi></mrow><mrow><mi>k</mi></mrow></msub></mrow></msup></mrow></math></span>. The subgraph centrality of the vertex <span><math><msub><mrow><mi>v</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> with respect to <span><math><mi>G</mi></math></span> is defined as the <span><math><mi>i</mi></math></span>th diagonal entry of the matrix <span><math><msup><mrow><mi>e</mi></mrow><mrow><mi>β</mi><mi>A</mi></mrow></msup></math></span>, where <span><math><mrow><mi>β</mi><mo>&gt;</mo><mn>0</mn></mrow></math></span>. Let <span><math><msup><mrow><mi>G</mi></mrow><mrow><mi>σ</mi></mrow></msup></math></span> be the oriented graph of <span><math><mi>G</mi></math></span> with an orientation <span><math><mi>σ</mi></math></span> and <span><math><mrow><msub><mrow><mi>ζ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>ζ</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>ζ</mi></mrow><mrow><mi>n</mi></mrow></msub></mrow></math></span> the eigenvalues of the skew-adjacency matrix of <span><math><msup><mrow><mi>G</mi></mrow><mrow><mi>σ</mi></mrow></msup></math></span>. The skew Estrada index of <span><math><msup><mrow><mi>G</mi></mrow><mrow><mi>σ</mi></mrow></msup></math></span> is defined as <span><math><mrow><msubsup><mrow><mo>∑</mo></mrow><mrow><mi>k</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>n</mi></mrow></msubsup><msup><mrow><mi>e</mi></mrow><mrow><mi>i</mi><msub><mrow><mi>ζ</mi></mrow><mrow><mi>k</mi></mrow></msub></mrow></msup></mrow></math></span>. Gao et al. obtained some Coulson-type integral formulas for the Estrada index of <span><math><mi>G</mi></math></span> and for the skew Estrada index of <span><math><msup><mrow><mi>G</mi></mrow><mrow><mi>σ</mi></mrow></msup></math></span>. In this paper, we will introduce the concept of the general Estrada index of <span><math><msub><mrow><mi>v</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> with respect to <span><math><mi>G</mi></math></span> as a generalization of subgraph centrality and the concept of the general skew Estrada index of <span><math><msub><mrow><mi>v</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> with respect to <span><math><msup><mrow><mi>G</mi></mrow><mrow><mi>σ</mi></mrow></msup></math></span>, and give some Coulson-type integral formulas for the general vertex Estrada index with respect to <span><math><mi>G</mi></math></span> and for the general vertex skew Estrada index with respect to <span><math><msup><mrow><mi>G</mi></mrow><mrow><mi>σ</mi></mrow></msup></math></span>.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"361 ","pages":"Pages 288-303"},"PeriodicalIF":1.0000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Coulson-type integral formulas for the general (skew) Estrada index of a vertex\",\"authors\":\"Lu Qiao ,&nbsp;Shenggui Zhang ,&nbsp;Jing Li ,&nbsp;Nan Gao\",\"doi\":\"10.1016/j.dam.2024.10.015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Let <span><math><mi>G</mi></math></span> be a simple graph with vertex set <span><math><mrow><mi>V</mi><mo>=</mo><mrow><mo>{</mo><msub><mrow><mi>v</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>v</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>v</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>}</mo></mrow></mrow></math></span> and <span><math><mrow><msub><mrow><mi>λ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>λ</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>λ</mi></mrow><mrow><mi>n</mi></mrow></msub></mrow></math></span> the eigenvalues of the adjacency matrix <span><math><mi>A</mi></math></span> of <span><math><mi>G</mi></math></span>. The Estrada index of <span><math><mi>G</mi></math></span> is defined as <span><math><mrow><msubsup><mrow><mo>∑</mo></mrow><mrow><mi>k</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>n</mi></mrow></msubsup><msup><mrow><mi>e</mi></mrow><mrow><msub><mrow><mi>λ</mi></mrow><mrow><mi>k</mi></mrow></msub></mrow></msup></mrow></math></span>. The subgraph centrality of the vertex <span><math><msub><mrow><mi>v</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> with respect to <span><math><mi>G</mi></math></span> is defined as the <span><math><mi>i</mi></math></span>th diagonal entry of the matrix <span><math><msup><mrow><mi>e</mi></mrow><mrow><mi>β</mi><mi>A</mi></mrow></msup></math></span>, where <span><math><mrow><mi>β</mi><mo>&gt;</mo><mn>0</mn></mrow></math></span>. Let <span><math><msup><mrow><mi>G</mi></mrow><mrow><mi>σ</mi></mrow></msup></math></span> be the oriented graph of <span><math><mi>G</mi></math></span> with an orientation <span><math><mi>σ</mi></math></span> and <span><math><mrow><msub><mrow><mi>ζ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>ζ</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>ζ</mi></mrow><mrow><mi>n</mi></mrow></msub></mrow></math></span> the eigenvalues of the skew-adjacency matrix of <span><math><msup><mrow><mi>G</mi></mrow><mrow><mi>σ</mi></mrow></msup></math></span>. The skew Estrada index of <span><math><msup><mrow><mi>G</mi></mrow><mrow><mi>σ</mi></mrow></msup></math></span> is defined as <span><math><mrow><msubsup><mrow><mo>∑</mo></mrow><mrow><mi>k</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>n</mi></mrow></msubsup><msup><mrow><mi>e</mi></mrow><mrow><mi>i</mi><msub><mrow><mi>ζ</mi></mrow><mrow><mi>k</mi></mrow></msub></mrow></msup></mrow></math></span>. Gao et al. obtained some Coulson-type integral formulas for the Estrada index of <span><math><mi>G</mi></math></span> and for the skew Estrada index of <span><math><msup><mrow><mi>G</mi></mrow><mrow><mi>σ</mi></mrow></msup></math></span>. In this paper, we will introduce the concept of the general Estrada index of <span><math><msub><mrow><mi>v</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> with respect to <span><math><mi>G</mi></math></span> as a generalization of subgraph centrality and the concept of the general skew Estrada index of <span><math><msub><mrow><mi>v</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> with respect to <span><math><msup><mrow><mi>G</mi></mrow><mrow><mi>σ</mi></mrow></msup></math></span>, and give some Coulson-type integral formulas for the general vertex Estrada index with respect to <span><math><mi>G</mi></math></span> and for the general vertex skew Estrada index with respect to <span><math><msup><mrow><mi>G</mi></mrow><mrow><mi>σ</mi></mrow></msup></math></span>.</div></div>\",\"PeriodicalId\":50573,\"journal\":{\"name\":\"Discrete Applied Mathematics\",\"volume\":\"361 \",\"pages\":\"Pages 288-303\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0166218X24004463\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166218X24004463","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

设 G 为简单图,顶点集 V={v1,v2,...,vn},λ1,λ2,...,λn 为 G 的邻接矩阵 A 的特征值。顶点 vi 相对于 G 的子图中心度定义为矩阵 eβA 的第 β 个对角项,其中 β>0。假设 Gσ 是方向为 σ 的 G 的有向图,ζ1,ζ2,...,ζn 是 Gσ 的倾斜-相接矩阵的特征值。Gσ 的偏斜埃斯特拉达指数定义为 ∑k=1neiζk。Gao 等人得到了一些关于 G 的埃斯特拉达指数和 Gσ 的偏斜埃斯特拉达指数的库尔森型积分公式。本文将介绍作为子图中心性广义化的vi相对于G的广义Estrada指数的概念和vi相对于Gσ的广义偏斜Estrada指数的概念,并给出G的广义顶点Estrada指数和Gσ的广义顶点偏斜Estrada指数的一些库伦式积分公式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Coulson-type integral formulas for the general (skew) Estrada index of a vertex
Let G be a simple graph with vertex set V={v1,v2,,vn} and λ1,λ2,,λn the eigenvalues of the adjacency matrix A of G. The Estrada index of G is defined as k=1neλk. The subgraph centrality of the vertex vi with respect to G is defined as the ith diagonal entry of the matrix eβA, where β>0. Let Gσ be the oriented graph of G with an orientation σ and ζ1,ζ2,,ζn the eigenvalues of the skew-adjacency matrix of Gσ. The skew Estrada index of Gσ is defined as k=1neiζk. Gao et al. obtained some Coulson-type integral formulas for the Estrada index of G and for the skew Estrada index of Gσ. In this paper, we will introduce the concept of the general Estrada index of vi with respect to G as a generalization of subgraph centrality and the concept of the general skew Estrada index of vi with respect to Gσ, and give some Coulson-type integral formulas for the general vertex Estrada index with respect to G and for the general vertex skew Estrada index with respect to Gσ.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Discrete Applied Mathematics
Discrete Applied Mathematics 数学-应用数学
CiteScore
2.30
自引率
9.10%
发文量
422
审稿时长
4.5 months
期刊介绍: The aim of Discrete Applied Mathematics is to bring together research papers in different areas of algorithmic and applicable discrete mathematics as well as applications of combinatorial mathematics to informatics and various areas of science and technology. Contributions presented to the journal can be research papers, short notes, surveys, and possibly research problems. The "Communications" section will be devoted to the fastest possible publication of recent research results that are checked and recommended for publication by a member of the Editorial Board. The journal will also publish a limited number of book announcements as well as proceedings of conferences. These proceedings will be fully refereed and adhere to the normal standards of the journal. Potential authors are advised to view the journal and the open calls-for-papers of special issues before submitting their manuscripts. Only high-quality, original work that is within the scope of the journal or the targeted special issue will be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信