血清钠的升高与阿尔茨海默病中淀粉样蛋白依赖性 tau 病变、神经变性和认知障碍的增加有关。

IF 4.2 3区 医学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Yu-Han Chen, Zhi-Bo Wang, Xi-Peng Liu, Zhi-Qi Mao
{"title":"血清钠的升高与阿尔茨海默病中淀粉样蛋白依赖性 tau 病变、神经变性和认知障碍的增加有关。","authors":"Yu-Han Chen, Zhi-Bo Wang, Xi-Peng Liu, Zhi-Qi Mao","doi":"10.1111/jnc.16257","DOIUrl":null,"url":null,"abstract":"<p><p>Vascular dysfunction is implicated in the pathophysiology of Alzheimer's disease (AD). While sodium is essential for maintaining vascular function, its role in AD pathology remains unclear. We included 353 participants from the Alzheimer's Disease Neuroimaging Initiative (ADNI), assessing serum sodium levels, cerebrospinal fluid (CSF) and positron emission tomography (PET) biomarkers, magnetic resonance imaging (MRI), and cognitive function. An independent sample (N = 471) with available CSF sodium-related proteins and AD biomarkers was also included. Associations between serum sodium levels and AD pathology, neurodegeneration, and cognition were evaluated using linear regression models. Spearman's correlation analyses assessed the relationships between CSF sodium-related proteins and AD biomarkers. Higher serum sodium levels were associated with increased AD pathology, reduced hippocampal volume, and greater cognitive decline (all p < 0.05). The relationship between serum sodium and amyloid PET was evident in several AD-susceptible brain regions, including the neocortex and limbic system. Individuals with high serum sodium exhibited higher tau pathology, lower hippocampal volume, and more severe cognitive decline per unit increase in amyloid PET compared to those with low serum sodium (all p < 0.05). Among the 14 CSF sodium-related proteins, which were inter-correlated, six were significantly correlated with CSF AD pathology and amyloid PET, while two were correlated with hippocampal volume and cognitive function, with sodium channel subunit beta-2 (SCN2B) and sodium channel subunit beta-3 (SCN3B) showing the strongest correlations. These findings underscore the crucial role of serum sodium in AD progression, highlighting a potential network of sodium dysregulation involved in AD pathology. Targeting sodium may offer a novel therapeutic approach to slowing AD progression, particularly by impeding the progression of amyloid-related downstream events.</p>","PeriodicalId":16527,"journal":{"name":"Journal of Neurochemistry","volume":" ","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Elevated serum sodium is linked to increased amyloid-dependent tau pathology, neurodegeneration, and cognitive impairment in Alzheimer's disease.\",\"authors\":\"Yu-Han Chen, Zhi-Bo Wang, Xi-Peng Liu, Zhi-Qi Mao\",\"doi\":\"10.1111/jnc.16257\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Vascular dysfunction is implicated in the pathophysiology of Alzheimer's disease (AD). While sodium is essential for maintaining vascular function, its role in AD pathology remains unclear. We included 353 participants from the Alzheimer's Disease Neuroimaging Initiative (ADNI), assessing serum sodium levels, cerebrospinal fluid (CSF) and positron emission tomography (PET) biomarkers, magnetic resonance imaging (MRI), and cognitive function. An independent sample (N = 471) with available CSF sodium-related proteins and AD biomarkers was also included. Associations between serum sodium levels and AD pathology, neurodegeneration, and cognition were evaluated using linear regression models. Spearman's correlation analyses assessed the relationships between CSF sodium-related proteins and AD biomarkers. Higher serum sodium levels were associated with increased AD pathology, reduced hippocampal volume, and greater cognitive decline (all p < 0.05). The relationship between serum sodium and amyloid PET was evident in several AD-susceptible brain regions, including the neocortex and limbic system. Individuals with high serum sodium exhibited higher tau pathology, lower hippocampal volume, and more severe cognitive decline per unit increase in amyloid PET compared to those with low serum sodium (all p < 0.05). Among the 14 CSF sodium-related proteins, which were inter-correlated, six were significantly correlated with CSF AD pathology and amyloid PET, while two were correlated with hippocampal volume and cognitive function, with sodium channel subunit beta-2 (SCN2B) and sodium channel subunit beta-3 (SCN3B) showing the strongest correlations. These findings underscore the crucial role of serum sodium in AD progression, highlighting a potential network of sodium dysregulation involved in AD pathology. Targeting sodium may offer a novel therapeutic approach to slowing AD progression, particularly by impeding the progression of amyloid-related downstream events.</p>\",\"PeriodicalId\":16527,\"journal\":{\"name\":\"Journal of Neurochemistry\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2024-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Neurochemistry\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1111/jnc.16257\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Neurochemistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1111/jnc.16257","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

血管功能障碍与阿尔茨海默病(AD)的病理生理学有关。虽然钠对维持血管功能至关重要,但它在阿尔茨海默病病理中的作用仍不清楚。我们纳入了 353 名阿尔茨海默病神经影像学倡议(ADNI)的参与者,评估他们的血清钠水平、脑脊液(CSF)和正电子发射断层扫描(PET)生物标志物、磁共振成像(MRI)和认知功能。此外还包括一个独立样本(N = 471),该样本具有可用的脑脊液钠相关蛋白和注意力缺失症生物标志物。使用线性回归模型评估了血清钠水平与 AD 病理学、神经变性和认知能力之间的关系。斯皮尔曼相关性分析评估了 CSF 钠相关蛋白和 AD 生物标志物之间的关系。血清钠水平越高,AD 病变越严重,海马体积越小,认知能力下降越严重(所有 p
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Elevated serum sodium is linked to increased amyloid-dependent tau pathology, neurodegeneration, and cognitive impairment in Alzheimer's disease.

Vascular dysfunction is implicated in the pathophysiology of Alzheimer's disease (AD). While sodium is essential for maintaining vascular function, its role in AD pathology remains unclear. We included 353 participants from the Alzheimer's Disease Neuroimaging Initiative (ADNI), assessing serum sodium levels, cerebrospinal fluid (CSF) and positron emission tomography (PET) biomarkers, magnetic resonance imaging (MRI), and cognitive function. An independent sample (N = 471) with available CSF sodium-related proteins and AD biomarkers was also included. Associations between serum sodium levels and AD pathology, neurodegeneration, and cognition were evaluated using linear regression models. Spearman's correlation analyses assessed the relationships between CSF sodium-related proteins and AD biomarkers. Higher serum sodium levels were associated with increased AD pathology, reduced hippocampal volume, and greater cognitive decline (all p < 0.05). The relationship between serum sodium and amyloid PET was evident in several AD-susceptible brain regions, including the neocortex and limbic system. Individuals with high serum sodium exhibited higher tau pathology, lower hippocampal volume, and more severe cognitive decline per unit increase in amyloid PET compared to those with low serum sodium (all p < 0.05). Among the 14 CSF sodium-related proteins, which were inter-correlated, six were significantly correlated with CSF AD pathology and amyloid PET, while two were correlated with hippocampal volume and cognitive function, with sodium channel subunit beta-2 (SCN2B) and sodium channel subunit beta-3 (SCN3B) showing the strongest correlations. These findings underscore the crucial role of serum sodium in AD progression, highlighting a potential network of sodium dysregulation involved in AD pathology. Targeting sodium may offer a novel therapeutic approach to slowing AD progression, particularly by impeding the progression of amyloid-related downstream events.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Neurochemistry
Journal of Neurochemistry 医学-神经科学
CiteScore
9.30
自引率
2.10%
发文量
181
审稿时长
2.2 months
期刊介绍: Journal of Neurochemistry focuses on molecular, cellular and biochemical aspects of the nervous system, the pathogenesis of neurological disorders and the development of disease specific biomarkers. It is devoted to the prompt publication of original findings of the highest scientific priority and value that provide novel mechanistic insights, represent a clear advance over previous studies and have the potential to generate exciting future research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信