Abbas Jafari , Konstantinos Vlachas , Eleni Chatzi , Jörg F. Unger
{"title":"贝叶斯框架:通过使用全场测量进行构成模型识别,并应用于异质材料","authors":"Abbas Jafari , Konstantinos Vlachas , Eleni Chatzi , Jörg F. Unger","doi":"10.1016/j.cma.2024.117489","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we present a Bayesian framework for the identification of the parameters of nonlinear constitutive material laws using full-field displacement measurements. The concept of force-based Finite Element Model Updating (FEMU-F) is employed, which relies on the availability of measurable quantities such as displacements and external forces. The proposed approach particularly unfolds the advantage of FEMU-F, as opposed to the conventional FEMU, by directly incorporating information from full-field measured displacements into the model. This feature is well-suited for heterogeneous materials with softening, where the localization zone depends on the random microstructure. Besides, to account for uncertainties in the measured displacements, we treat displacements as additional unknown variables to be identified, alongside the constitutive parameters. A variational Bayesian scheme is then employed to identify these unknowns via approximate posteriors under the assumption of multivariate normal distributions. An optimization problem is then formulated and solved iteratively, aiming to minimize the discrepancy between true and approximate posteriors. The benefit of the proposed approach lies in the stochastic nature of the formulation, which allows to tackle uncertainties related to model parameters and measurement noise. We verify the efficacy of our proposed framework on two simulated examples using gradient damage model with a path-dependent nonlinear constitutive law. Based on a nonlocal equivalent strain norm, this constitutive model can simulate a localized damage zone representing softening and cracking. The first example illustrates an application of the FEMU-F approach to cracked structures including sensitivity studies related to measurement noise and parameters of the prior distributions. In this example, the variational Bayesian solver demonstrates a sizable advantage in terms of computational efficiency compared to a traditional least-square optimizer. The second example demonstrates a sub-domain analysis to tackle challenges associated with limited domain knowledge such as uncertain boundary conditions.</div></div>","PeriodicalId":55222,"journal":{"name":"Computer Methods in Applied Mechanics and Engineering","volume":"433 ","pages":"Article 117489"},"PeriodicalIF":6.9000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Bayesian framework for constitutive model identification via use of full field measurements, with application to heterogeneous materials\",\"authors\":\"Abbas Jafari , Konstantinos Vlachas , Eleni Chatzi , Jörg F. Unger\",\"doi\":\"10.1016/j.cma.2024.117489\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper, we present a Bayesian framework for the identification of the parameters of nonlinear constitutive material laws using full-field displacement measurements. The concept of force-based Finite Element Model Updating (FEMU-F) is employed, which relies on the availability of measurable quantities such as displacements and external forces. The proposed approach particularly unfolds the advantage of FEMU-F, as opposed to the conventional FEMU, by directly incorporating information from full-field measured displacements into the model. This feature is well-suited for heterogeneous materials with softening, where the localization zone depends on the random microstructure. Besides, to account for uncertainties in the measured displacements, we treat displacements as additional unknown variables to be identified, alongside the constitutive parameters. A variational Bayesian scheme is then employed to identify these unknowns via approximate posteriors under the assumption of multivariate normal distributions. An optimization problem is then formulated and solved iteratively, aiming to minimize the discrepancy between true and approximate posteriors. The benefit of the proposed approach lies in the stochastic nature of the formulation, which allows to tackle uncertainties related to model parameters and measurement noise. We verify the efficacy of our proposed framework on two simulated examples using gradient damage model with a path-dependent nonlinear constitutive law. Based on a nonlocal equivalent strain norm, this constitutive model can simulate a localized damage zone representing softening and cracking. The first example illustrates an application of the FEMU-F approach to cracked structures including sensitivity studies related to measurement noise and parameters of the prior distributions. In this example, the variational Bayesian solver demonstrates a sizable advantage in terms of computational efficiency compared to a traditional least-square optimizer. The second example demonstrates a sub-domain analysis to tackle challenges associated with limited domain knowledge such as uncertain boundary conditions.</div></div>\",\"PeriodicalId\":55222,\"journal\":{\"name\":\"Computer Methods in Applied Mechanics and Engineering\",\"volume\":\"433 \",\"pages\":\"Article 117489\"},\"PeriodicalIF\":6.9000,\"publicationDate\":\"2024-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Methods in Applied Mechanics and Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0045782524007436\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Methods in Applied Mechanics and Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0045782524007436","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
A Bayesian framework for constitutive model identification via use of full field measurements, with application to heterogeneous materials
In this paper, we present a Bayesian framework for the identification of the parameters of nonlinear constitutive material laws using full-field displacement measurements. The concept of force-based Finite Element Model Updating (FEMU-F) is employed, which relies on the availability of measurable quantities such as displacements and external forces. The proposed approach particularly unfolds the advantage of FEMU-F, as opposed to the conventional FEMU, by directly incorporating information from full-field measured displacements into the model. This feature is well-suited for heterogeneous materials with softening, where the localization zone depends on the random microstructure. Besides, to account for uncertainties in the measured displacements, we treat displacements as additional unknown variables to be identified, alongside the constitutive parameters. A variational Bayesian scheme is then employed to identify these unknowns via approximate posteriors under the assumption of multivariate normal distributions. An optimization problem is then formulated and solved iteratively, aiming to minimize the discrepancy between true and approximate posteriors. The benefit of the proposed approach lies in the stochastic nature of the formulation, which allows to tackle uncertainties related to model parameters and measurement noise. We verify the efficacy of our proposed framework on two simulated examples using gradient damage model with a path-dependent nonlinear constitutive law. Based on a nonlocal equivalent strain norm, this constitutive model can simulate a localized damage zone representing softening and cracking. The first example illustrates an application of the FEMU-F approach to cracked structures including sensitivity studies related to measurement noise and parameters of the prior distributions. In this example, the variational Bayesian solver demonstrates a sizable advantage in terms of computational efficiency compared to a traditional least-square optimizer. The second example demonstrates a sub-domain analysis to tackle challenges associated with limited domain knowledge such as uncertain boundary conditions.
期刊介绍:
Computer Methods in Applied Mechanics and Engineering stands as a cornerstone in the realm of computational science and engineering. With a history spanning over five decades, the journal has been a key platform for disseminating papers on advanced mathematical modeling and numerical solutions. Interdisciplinary in nature, these contributions encompass mechanics, mathematics, computer science, and various scientific disciplines. The journal welcomes a broad range of computational methods addressing the simulation, analysis, and design of complex physical problems, making it a vital resource for researchers in the field.