Gu Zhang, Domenico Giuliano, Igor V. Gornyi, Gabriele Campagnano
{"title":"多边几何中𝜈=12 手性鲁丁格液体的任意子准粒子的隧穿电流和电流相关性","authors":"Gu Zhang, Domenico Giuliano, Igor V. Gornyi, Gabriele Campagnano","doi":"10.1103/physrevb.110.195102","DOIUrl":null,"url":null,"abstract":"We consider anyonic quasiparticles with charge <mjx-container ctxtmenu_counter=\"93\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math data-semantic-structure=\"(3 0 1 2)\"><mjx-mrow data-semantic-children=\"0,2\" data-semantic-content=\"1\" data-semantic- data-semantic-owns=\"0 1 2\" data-semantic-role=\"division\" data-semantic-speech=\"e divided by 2\" data-semantic-type=\"infixop\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"3\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c>𝑒</mjx-c></mjx-mi><mjx-mo data-semantic- data-semantic-operator=\"infixop,/\" data-semantic-parent=\"3\" data-semantic-role=\"division\" data-semantic-type=\"operator\"><mjx-c>/</mjx-c></mjx-mo><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"3\" data-semantic-role=\"integer\" data-semantic-type=\"number\"><mjx-c>2</mjx-c></mjx-mn></mjx-mrow></mjx-math></mjx-container> described by the <mjx-container ctxtmenu_counter=\"94\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math data-semantic-structure=\"(6 0 1 (5 2 3 4))\"><mjx-mrow data-semantic-children=\"0,5\" data-semantic-content=\"1\" data-semantic- data-semantic-owns=\"0 1 5\" data-semantic-role=\"equality\" data-semantic-speech=\"nu equals 1 divided by 2\" data-semantic-type=\"relseq\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"6\" data-semantic-role=\"greekletter\" data-semantic-type=\"identifier\"><mjx-c>𝜈</mjx-c></mjx-mi><mjx-mo data-semantic- data-semantic-operator=\"relseq,=\" data-semantic-parent=\"6\" data-semantic-role=\"equality\" data-semantic-type=\"relation\" space=\"4\"><mjx-c>=</mjx-c></mjx-mo><mjx-mrow data-semantic-added=\"true\" data-semantic-children=\"2,4\" data-semantic-content=\"3\" data-semantic- data-semantic-owns=\"2 3 4\" data-semantic-parent=\"6\" data-semantic-role=\"division\" data-semantic-type=\"infixop\" space=\"4\"><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"5\" data-semantic-role=\"integer\" data-semantic-type=\"number\"><mjx-c>1</mjx-c></mjx-mn><mjx-mo data-semantic- data-semantic-operator=\"infixop,/\" data-semantic-parent=\"5\" data-semantic-role=\"division\" data-semantic-type=\"operator\"><mjx-c>/</mjx-c></mjx-mo><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"5\" data-semantic-role=\"integer\" data-semantic-type=\"number\"><mjx-c>2</mjx-c></mjx-mn></mjx-mrow></mjx-mrow></mjx-math></mjx-container> chiral Luttinger liquid, which collide in a Hong–Ou–Mandel-like interferometer. These colliding anyonic channels can be formally viewed as hosting Laughlin-like fractional <mjx-container ctxtmenu_counter=\"95\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math data-semantic-structure=\"(6 0 1 (5 2 3 4))\"><mjx-mrow data-semantic-children=\"0,5\" data-semantic-content=\"1\" data-semantic- data-semantic-owns=\"0 1 5\" data-semantic-role=\"equality\" data-semantic-speech=\"nu equals 1 divided by 2\" data-semantic-type=\"relseq\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"6\" data-semantic-role=\"greekletter\" data-semantic-type=\"identifier\"><mjx-c>𝜈</mjx-c></mjx-mi><mjx-mo data-semantic- data-semantic-operator=\"relseq,=\" data-semantic-parent=\"6\" data-semantic-role=\"equality\" data-semantic-type=\"relation\" space=\"4\"><mjx-c>=</mjx-c></mjx-mo><mjx-mrow data-semantic-added=\"true\" data-semantic-children=\"2,4\" data-semantic-content=\"3\" data-semantic- data-semantic-owns=\"2 3 4\" data-semantic-parent=\"6\" data-semantic-role=\"division\" data-semantic-type=\"infixop\" space=\"4\"><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"5\" data-semantic-role=\"integer\" data-semantic-type=\"number\"><mjx-c>1</mjx-c></mjx-mn><mjx-mo data-semantic- data-semantic-operator=\"infixop,/\" data-semantic-parent=\"5\" data-semantic-role=\"division\" data-semantic-type=\"operator\"><mjx-c>/</mjx-c></mjx-mo><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"5\" data-semantic-role=\"integer\" data-semantic-type=\"number\"><mjx-c>2</mjx-c></mjx-mn></mjx-mrow></mjx-mrow></mjx-math></mjx-container> quasiparticles. More specifically, two possible geometries are considered: (i) a two-edge-channel setup where anyons originate from equilibrium reservoirs; and (ii) a four-edge-channel setup where nonequilibrium anyons arrive at the collider in the form of diluted beams. For both setups, we calculate the tunneling current and the current correlations. For setup (i), our results provide analytically exact expressions for the tunneling current, tunneling-current noise, and cross-correlation noise. An exact relation between conductance and noises is explicitly demonstrated. For setup (ii), we show that the tunneling current and the generalized Fano factor [defined in B. Rosenow <i>et al.</i> (2016)] are finite for diluted streams of <mjx-container ctxtmenu_counter=\"96\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math data-semantic-structure=\"(6 0 1 (5 2 3 4))\"><mjx-mrow data-semantic-children=\"0,5\" data-semantic-content=\"1\" data-semantic- data-semantic-owns=\"0 1 5\" data-semantic-role=\"equality\" data-semantic-speech=\"nu equals 1 divided by 2\" data-semantic-type=\"relseq\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"6\" data-semantic-role=\"greekletter\" data-semantic-type=\"identifier\"><mjx-c>𝜈</mjx-c></mjx-mi><mjx-mo data-semantic- data-semantic-operator=\"relseq,=\" data-semantic-parent=\"6\" data-semantic-role=\"equality\" data-semantic-type=\"relation\" space=\"4\"><mjx-c>=</mjx-c></mjx-mo><mjx-mrow data-semantic-added=\"true\" data-semantic-children=\"2,4\" data-semantic-content=\"3\" data-semantic- data-semantic-owns=\"2 3 4\" data-semantic-parent=\"6\" data-semantic-role=\"division\" data-semantic-type=\"infixop\" space=\"4\"><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"5\" data-semantic-role=\"integer\" data-semantic-type=\"number\"><mjx-c>1</mjx-c></mjx-mn><mjx-mo data-semantic- data-semantic-operator=\"infixop,/\" data-semantic-parent=\"5\" data-semantic-role=\"division\" data-semantic-type=\"operator\"><mjx-c>/</mjx-c></mjx-mo><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"5\" data-semantic-role=\"integer\" data-semantic-type=\"number\"><mjx-c>2</mjx-c></mjx-mn></mjx-mrow></mjx-mrow></mjx-math></mjx-container> anyons. This is due to the processes where nonequilibrium anyons, supplied via either source edge, directly tunnel at the central QPC. Thus, to obtain meaningful results in this case, one should go beyond the so-called time-domain braiding processes, where nonequilibrium anyons do not tunnel at the collider, but rather indirectly influence the tunneling by braiding with the quasiparticle-quasihole pairs created at the collider. This suggests that the effect of direct tunneling and collisions of diluted anyons in the Hong-Ou-Mandel interferometer can be important for various observables in physical quantum-Hall edges at Laughlin filling fractions.","PeriodicalId":20082,"journal":{"name":"Physical Review B","volume":"7 1","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tunneling current and current correlations for anyonic quasiparticles of a𝜈=12chiral Luttinger liquid in multiedge geometries\",\"authors\":\"Gu Zhang, Domenico Giuliano, Igor V. Gornyi, Gabriele Campagnano\",\"doi\":\"10.1103/physrevb.110.195102\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider anyonic quasiparticles with charge <mjx-container ctxtmenu_counter=\\\"93\\\" ctxtmenu_oldtabindex=\\\"1\\\" jax=\\\"CHTML\\\" overflow=\\\"linebreak\\\" role=\\\"tree\\\" sre-explorer- style=\\\"font-size: 100.7%;\\\" tabindex=\\\"0\\\"><mjx-math data-semantic-structure=\\\"(3 0 1 2)\\\"><mjx-mrow data-semantic-children=\\\"0,2\\\" data-semantic-content=\\\"1\\\" data-semantic- data-semantic-owns=\\\"0 1 2\\\" data-semantic-role=\\\"division\\\" data-semantic-speech=\\\"e divided by 2\\\" data-semantic-type=\\\"infixop\\\"><mjx-mi data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic- data-semantic-parent=\\\"3\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-type=\\\"identifier\\\"><mjx-c>𝑒</mjx-c></mjx-mi><mjx-mo data-semantic- data-semantic-operator=\\\"infixop,/\\\" data-semantic-parent=\\\"3\\\" data-semantic-role=\\\"division\\\" data-semantic-type=\\\"operator\\\"><mjx-c>/</mjx-c></mjx-mo><mjx-mn data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"normal\\\" data-semantic- data-semantic-parent=\\\"3\\\" data-semantic-role=\\\"integer\\\" data-semantic-type=\\\"number\\\"><mjx-c>2</mjx-c></mjx-mn></mjx-mrow></mjx-math></mjx-container> described by the <mjx-container ctxtmenu_counter=\\\"94\\\" ctxtmenu_oldtabindex=\\\"1\\\" jax=\\\"CHTML\\\" overflow=\\\"linebreak\\\" role=\\\"tree\\\" sre-explorer- style=\\\"font-size: 100.7%;\\\" tabindex=\\\"0\\\"><mjx-math data-semantic-structure=\\\"(6 0 1 (5 2 3 4))\\\"><mjx-mrow data-semantic-children=\\\"0,5\\\" data-semantic-content=\\\"1\\\" data-semantic- data-semantic-owns=\\\"0 1 5\\\" data-semantic-role=\\\"equality\\\" data-semantic-speech=\\\"nu equals 1 divided by 2\\\" data-semantic-type=\\\"relseq\\\"><mjx-mi data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic- data-semantic-parent=\\\"6\\\" data-semantic-role=\\\"greekletter\\\" data-semantic-type=\\\"identifier\\\"><mjx-c>𝜈</mjx-c></mjx-mi><mjx-mo data-semantic- data-semantic-operator=\\\"relseq,=\\\" data-semantic-parent=\\\"6\\\" data-semantic-role=\\\"equality\\\" data-semantic-type=\\\"relation\\\" space=\\\"4\\\"><mjx-c>=</mjx-c></mjx-mo><mjx-mrow data-semantic-added=\\\"true\\\" data-semantic-children=\\\"2,4\\\" data-semantic-content=\\\"3\\\" data-semantic- data-semantic-owns=\\\"2 3 4\\\" data-semantic-parent=\\\"6\\\" data-semantic-role=\\\"division\\\" data-semantic-type=\\\"infixop\\\" space=\\\"4\\\"><mjx-mn data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"normal\\\" data-semantic- data-semantic-parent=\\\"5\\\" data-semantic-role=\\\"integer\\\" data-semantic-type=\\\"number\\\"><mjx-c>1</mjx-c></mjx-mn><mjx-mo data-semantic- data-semantic-operator=\\\"infixop,/\\\" data-semantic-parent=\\\"5\\\" data-semantic-role=\\\"division\\\" data-semantic-type=\\\"operator\\\"><mjx-c>/</mjx-c></mjx-mo><mjx-mn data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"normal\\\" data-semantic- data-semantic-parent=\\\"5\\\" data-semantic-role=\\\"integer\\\" data-semantic-type=\\\"number\\\"><mjx-c>2</mjx-c></mjx-mn></mjx-mrow></mjx-mrow></mjx-math></mjx-container> chiral Luttinger liquid, which collide in a Hong–Ou–Mandel-like interferometer. These colliding anyonic channels can be formally viewed as hosting Laughlin-like fractional <mjx-container ctxtmenu_counter=\\\"95\\\" ctxtmenu_oldtabindex=\\\"1\\\" jax=\\\"CHTML\\\" overflow=\\\"linebreak\\\" role=\\\"tree\\\" sre-explorer- style=\\\"font-size: 100.7%;\\\" tabindex=\\\"0\\\"><mjx-math data-semantic-structure=\\\"(6 0 1 (5 2 3 4))\\\"><mjx-mrow data-semantic-children=\\\"0,5\\\" data-semantic-content=\\\"1\\\" data-semantic- data-semantic-owns=\\\"0 1 5\\\" data-semantic-role=\\\"equality\\\" data-semantic-speech=\\\"nu equals 1 divided by 2\\\" data-semantic-type=\\\"relseq\\\"><mjx-mi data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic- data-semantic-parent=\\\"6\\\" data-semantic-role=\\\"greekletter\\\" data-semantic-type=\\\"identifier\\\"><mjx-c>𝜈</mjx-c></mjx-mi><mjx-mo data-semantic- data-semantic-operator=\\\"relseq,=\\\" data-semantic-parent=\\\"6\\\" data-semantic-role=\\\"equality\\\" data-semantic-type=\\\"relation\\\" space=\\\"4\\\"><mjx-c>=</mjx-c></mjx-mo><mjx-mrow data-semantic-added=\\\"true\\\" data-semantic-children=\\\"2,4\\\" data-semantic-content=\\\"3\\\" data-semantic- data-semantic-owns=\\\"2 3 4\\\" data-semantic-parent=\\\"6\\\" data-semantic-role=\\\"division\\\" data-semantic-type=\\\"infixop\\\" space=\\\"4\\\"><mjx-mn data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"normal\\\" data-semantic- data-semantic-parent=\\\"5\\\" data-semantic-role=\\\"integer\\\" data-semantic-type=\\\"number\\\"><mjx-c>1</mjx-c></mjx-mn><mjx-mo data-semantic- data-semantic-operator=\\\"infixop,/\\\" data-semantic-parent=\\\"5\\\" data-semantic-role=\\\"division\\\" data-semantic-type=\\\"operator\\\"><mjx-c>/</mjx-c></mjx-mo><mjx-mn data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"normal\\\" data-semantic- data-semantic-parent=\\\"5\\\" data-semantic-role=\\\"integer\\\" data-semantic-type=\\\"number\\\"><mjx-c>2</mjx-c></mjx-mn></mjx-mrow></mjx-mrow></mjx-math></mjx-container> quasiparticles. More specifically, two possible geometries are considered: (i) a two-edge-channel setup where anyons originate from equilibrium reservoirs; and (ii) a four-edge-channel setup where nonequilibrium anyons arrive at the collider in the form of diluted beams. For both setups, we calculate the tunneling current and the current correlations. For setup (i), our results provide analytically exact expressions for the tunneling current, tunneling-current noise, and cross-correlation noise. An exact relation between conductance and noises is explicitly demonstrated. For setup (ii), we show that the tunneling current and the generalized Fano factor [defined in B. Rosenow <i>et al.</i> (2016)] are finite for diluted streams of <mjx-container ctxtmenu_counter=\\\"96\\\" ctxtmenu_oldtabindex=\\\"1\\\" jax=\\\"CHTML\\\" overflow=\\\"linebreak\\\" role=\\\"tree\\\" sre-explorer- style=\\\"font-size: 100.7%;\\\" tabindex=\\\"0\\\"><mjx-math data-semantic-structure=\\\"(6 0 1 (5 2 3 4))\\\"><mjx-mrow data-semantic-children=\\\"0,5\\\" data-semantic-content=\\\"1\\\" data-semantic- data-semantic-owns=\\\"0 1 5\\\" data-semantic-role=\\\"equality\\\" data-semantic-speech=\\\"nu equals 1 divided by 2\\\" data-semantic-type=\\\"relseq\\\"><mjx-mi data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic- data-semantic-parent=\\\"6\\\" data-semantic-role=\\\"greekletter\\\" data-semantic-type=\\\"identifier\\\"><mjx-c>𝜈</mjx-c></mjx-mi><mjx-mo data-semantic- data-semantic-operator=\\\"relseq,=\\\" data-semantic-parent=\\\"6\\\" data-semantic-role=\\\"equality\\\" data-semantic-type=\\\"relation\\\" space=\\\"4\\\"><mjx-c>=</mjx-c></mjx-mo><mjx-mrow data-semantic-added=\\\"true\\\" data-semantic-children=\\\"2,4\\\" data-semantic-content=\\\"3\\\" data-semantic- data-semantic-owns=\\\"2 3 4\\\" data-semantic-parent=\\\"6\\\" data-semantic-role=\\\"division\\\" data-semantic-type=\\\"infixop\\\" space=\\\"4\\\"><mjx-mn data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"normal\\\" data-semantic- data-semantic-parent=\\\"5\\\" data-semantic-role=\\\"integer\\\" data-semantic-type=\\\"number\\\"><mjx-c>1</mjx-c></mjx-mn><mjx-mo data-semantic- data-semantic-operator=\\\"infixop,/\\\" data-semantic-parent=\\\"5\\\" data-semantic-role=\\\"division\\\" data-semantic-type=\\\"operator\\\"><mjx-c>/</mjx-c></mjx-mo><mjx-mn data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"normal\\\" data-semantic- data-semantic-parent=\\\"5\\\" data-semantic-role=\\\"integer\\\" data-semantic-type=\\\"number\\\"><mjx-c>2</mjx-c></mjx-mn></mjx-mrow></mjx-mrow></mjx-math></mjx-container> anyons. This is due to the processes where nonequilibrium anyons, supplied via either source edge, directly tunnel at the central QPC. Thus, to obtain meaningful results in this case, one should go beyond the so-called time-domain braiding processes, where nonequilibrium anyons do not tunnel at the collider, but rather indirectly influence the tunneling by braiding with the quasiparticle-quasihole pairs created at the collider. This suggests that the effect of direct tunneling and collisions of diluted anyons in the Hong-Ou-Mandel interferometer can be important for various observables in physical quantum-Hall edges at Laughlin filling fractions.\",\"PeriodicalId\":20082,\"journal\":{\"name\":\"Physical Review B\",\"volume\":\"7 1\",\"pages\":\"\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Review B\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/physrevb.110.195102\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review B","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevb.110.195102","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
Tunneling current and current correlations for anyonic quasiparticles of a𝜈=12chiral Luttinger liquid in multiedge geometries
We consider anyonic quasiparticles with charge 𝑒/2 described by the 𝜈=1/2 chiral Luttinger liquid, which collide in a Hong–Ou–Mandel-like interferometer. These colliding anyonic channels can be formally viewed as hosting Laughlin-like fractional 𝜈=1/2 quasiparticles. More specifically, two possible geometries are considered: (i) a two-edge-channel setup where anyons originate from equilibrium reservoirs; and (ii) a four-edge-channel setup where nonequilibrium anyons arrive at the collider in the form of diluted beams. For both setups, we calculate the tunneling current and the current correlations. For setup (i), our results provide analytically exact expressions for the tunneling current, tunneling-current noise, and cross-correlation noise. An exact relation between conductance and noises is explicitly demonstrated. For setup (ii), we show that the tunneling current and the generalized Fano factor [defined in B. Rosenow et al. (2016)] are finite for diluted streams of 𝜈=1/2 anyons. This is due to the processes where nonequilibrium anyons, supplied via either source edge, directly tunnel at the central QPC. Thus, to obtain meaningful results in this case, one should go beyond the so-called time-domain braiding processes, where nonequilibrium anyons do not tunnel at the collider, but rather indirectly influence the tunneling by braiding with the quasiparticle-quasihole pairs created at the collider. This suggests that the effect of direct tunneling and collisions of diluted anyons in the Hong-Ou-Mandel interferometer can be important for various observables in physical quantum-Hall edges at Laughlin filling fractions.
期刊介绍:
Physical Review B (PRB) is the world’s largest dedicated physics journal, publishing approximately 100 new, high-quality papers each week. The most highly cited journal in condensed matter physics, PRB provides outstanding depth and breadth of coverage, combined with unrivaled context and background for ongoing research by scientists worldwide.
PRB covers the full range of condensed matter, materials physics, and related subfields, including:
-Structure and phase transitions
-Ferroelectrics and multiferroics
-Disordered systems and alloys
-Magnetism
-Superconductivity
-Electronic structure, photonics, and metamaterials
-Semiconductors and mesoscopic systems
-Surfaces, nanoscience, and two-dimensional materials
-Topological states of matter