Welmoed Veurman , Jonas Kern , Leon Pflüger , Hannes Wagner-Mohnsen , Matthias Müller , Pietro P. Altermatt , ZhaoYu Lou , Martin Stolterfoht , Felix Haase , Sarah Kajari-Schröder , Robby Peibst
{"title":"解读过氧化物太阳能电池中的滞后现象:从区分浅陷阱和移动离子的器件模拟中获得启示","authors":"Welmoed Veurman , Jonas Kern , Leon Pflüger , Hannes Wagner-Mohnsen , Matthias Müller , Pietro P. Altermatt , ZhaoYu Lou , Martin Stolterfoht , Felix Haase , Sarah Kajari-Schröder , Robby Peibst","doi":"10.1016/j.solener.2024.113037","DOIUrl":null,"url":null,"abstract":"<div><div>In perovskite solar cells, a hysteresis of the current–voltage curve is often observed and is usually attributed to moving ions. However, our device modelling forecasts that it can also be explained, at least in part, by the occupation behaviour of slow-shallow trap states in the perovskite material. A difference between the ionic and trap interpretation arises in the illumination dependence of the hysteresis. Under the assumption of slow-shallow trap states, our simulations show that a diffusion capacitive effect should be observed at high scanning rates (> 100 V/s) and low light intensities (< 0.01 sun). This effect does not appear when assuming a device model with moving ion vacancies. This offers an opportunity for experimentally distinguishing between the two explanatory models and to quantify the relative contributions to hysteresis from ion vacancies and traps, respectively.</div></div>","PeriodicalId":428,"journal":{"name":"Solar Energy","volume":"284 ","pages":"Article 113037"},"PeriodicalIF":6.0000,"publicationDate":"2024-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deciphering hysteresis in perovskite solar cells: Insights from device simulations distinguishing shallow traps from mobile ions\",\"authors\":\"Welmoed Veurman , Jonas Kern , Leon Pflüger , Hannes Wagner-Mohnsen , Matthias Müller , Pietro P. Altermatt , ZhaoYu Lou , Martin Stolterfoht , Felix Haase , Sarah Kajari-Schröder , Robby Peibst\",\"doi\":\"10.1016/j.solener.2024.113037\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In perovskite solar cells, a hysteresis of the current–voltage curve is often observed and is usually attributed to moving ions. However, our device modelling forecasts that it can also be explained, at least in part, by the occupation behaviour of slow-shallow trap states in the perovskite material. A difference between the ionic and trap interpretation arises in the illumination dependence of the hysteresis. Under the assumption of slow-shallow trap states, our simulations show that a diffusion capacitive effect should be observed at high scanning rates (> 100 V/s) and low light intensities (< 0.01 sun). This effect does not appear when assuming a device model with moving ion vacancies. This offers an opportunity for experimentally distinguishing between the two explanatory models and to quantify the relative contributions to hysteresis from ion vacancies and traps, respectively.</div></div>\",\"PeriodicalId\":428,\"journal\":{\"name\":\"Solar Energy\",\"volume\":\"284 \",\"pages\":\"Article 113037\"},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2024-11-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Solar Energy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0038092X24007321\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0038092X24007321","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Deciphering hysteresis in perovskite solar cells: Insights from device simulations distinguishing shallow traps from mobile ions
In perovskite solar cells, a hysteresis of the current–voltage curve is often observed and is usually attributed to moving ions. However, our device modelling forecasts that it can also be explained, at least in part, by the occupation behaviour of slow-shallow trap states in the perovskite material. A difference between the ionic and trap interpretation arises in the illumination dependence of the hysteresis. Under the assumption of slow-shallow trap states, our simulations show that a diffusion capacitive effect should be observed at high scanning rates (> 100 V/s) and low light intensities (< 0.01 sun). This effect does not appear when assuming a device model with moving ion vacancies. This offers an opportunity for experimentally distinguishing between the two explanatory models and to quantify the relative contributions to hysteresis from ion vacancies and traps, respectively.
期刊介绍:
Solar Energy welcomes manuscripts presenting information not previously published in journals on any aspect of solar energy research, development, application, measurement or policy. The term "solar energy" in this context includes the indirect uses such as wind energy and biomass