Nijil S, Sinchana G Bhat, Anushree Kedla, Mahima Rachel Thomas, Sudarshan Kini
{"title":"治疗 MRSA 的一线希望:聚氧乙烯稳定银纳米粒子和甲氧西林对抗菌药耐药性的协同作用。","authors":"Nijil S, Sinchana G Bhat, Anushree Kedla, Mahima Rachel Thomas, Sudarshan Kini","doi":"10.1016/j.micpath.2024.107087","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>Increasing antibiotic resistance in bacterial infections, including drug-resistant strains like methicillin-resistant <em>Staphylococcus aureus</em> (MRSA), necessitates innovative therapeutic solutions. Silver nanoparticles are promising for combating infections, but toxicity concerns emphasize the importance of factors like dosage, size, shape, and surface chemistry. Hence, exploring poloxamer as a stabilizing agent to reduce its toxicity and enhance the antibacterial effect on MRSA is investigated.</div></div><div><h3>Methods</h3><div>Silver nanoparticles stabilized with poloxamer (AgNPs@Pol) were synthesized through the chemical reduction method and characterized using UV–visible spectrophotometer, HR-TEM, DLS, and Zeta potential measurements. Subsequently, the antibacterial activity of AgNPs@Pol alone and in combination with methicillin against MRSA and methicillin-susceptible <em>S. aureus</em> (MSSA) was evaluated using the broth microdilution method.</div></div><div><h3>Results</h3><div>AgNPs@Pol showed significant efficacy against MRSA and MSSA, achieving a 100 % reduction in colony-forming units (CFU) at 9.7 μg/ml. The minimum inhibitory concentration (MIC) against MRSA and MSSA was 8.6 μg/ml and 4.3 μg/ml, respectively. A synergistic effect was observed when AgNPs@Pol was combined with methicillin. Treatment with AgNPs@Pol increased reactive oxygen species (ROS) production in both strains, contributing to its antibacterial activity. Real-time qPCR analysis indicated the downregulation of genes involved in antimicrobial resistance and cell adhesion in both strains. Further, the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay demonstrated low cytotoxicity for AgNPs@Pol against MCF-7, MG-63, and NIH-3T3 cell lines.</div></div><div><h3>Conclusion</h3><div>The developed AgNPs@Pol demonstrated extensive colloidal stability, potent antibacterial activity and synergistic effect with methicillin against MRSA and MSSA. Further studies in primary cells and <em>in vivo</em> models may validate its potential for clinical applications.</div></div>","PeriodicalId":18599,"journal":{"name":"Microbial pathogenesis","volume":"197 ","pages":"Article 107087"},"PeriodicalIF":3.3000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A silver lining in MRSA treatment: The synergistic action of poloxamer-stabilized silver nanoparticles and methicillin against antimicrobial resistance\",\"authors\":\"Nijil S, Sinchana G Bhat, Anushree Kedla, Mahima Rachel Thomas, Sudarshan Kini\",\"doi\":\"10.1016/j.micpath.2024.107087\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background</h3><div>Increasing antibiotic resistance in bacterial infections, including drug-resistant strains like methicillin-resistant <em>Staphylococcus aureus</em> (MRSA), necessitates innovative therapeutic solutions. Silver nanoparticles are promising for combating infections, but toxicity concerns emphasize the importance of factors like dosage, size, shape, and surface chemistry. Hence, exploring poloxamer as a stabilizing agent to reduce its toxicity and enhance the antibacterial effect on MRSA is investigated.</div></div><div><h3>Methods</h3><div>Silver nanoparticles stabilized with poloxamer (AgNPs@Pol) were synthesized through the chemical reduction method and characterized using UV–visible spectrophotometer, HR-TEM, DLS, and Zeta potential measurements. Subsequently, the antibacterial activity of AgNPs@Pol alone and in combination with methicillin against MRSA and methicillin-susceptible <em>S. aureus</em> (MSSA) was evaluated using the broth microdilution method.</div></div><div><h3>Results</h3><div>AgNPs@Pol showed significant efficacy against MRSA and MSSA, achieving a 100 % reduction in colony-forming units (CFU) at 9.7 μg/ml. The minimum inhibitory concentration (MIC) against MRSA and MSSA was 8.6 μg/ml and 4.3 μg/ml, respectively. A synergistic effect was observed when AgNPs@Pol was combined with methicillin. Treatment with AgNPs@Pol increased reactive oxygen species (ROS) production in both strains, contributing to its antibacterial activity. Real-time qPCR analysis indicated the downregulation of genes involved in antimicrobial resistance and cell adhesion in both strains. Further, the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay demonstrated low cytotoxicity for AgNPs@Pol against MCF-7, MG-63, and NIH-3T3 cell lines.</div></div><div><h3>Conclusion</h3><div>The developed AgNPs@Pol demonstrated extensive colloidal stability, potent antibacterial activity and synergistic effect with methicillin against MRSA and MSSA. Further studies in primary cells and <em>in vivo</em> models may validate its potential for clinical applications.</div></div>\",\"PeriodicalId\":18599,\"journal\":{\"name\":\"Microbial pathogenesis\",\"volume\":\"197 \",\"pages\":\"Article 107087\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microbial pathogenesis\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0882401024005540\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"IMMUNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbial pathogenesis","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0882401024005540","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
A silver lining in MRSA treatment: The synergistic action of poloxamer-stabilized silver nanoparticles and methicillin against antimicrobial resistance
Background
Increasing antibiotic resistance in bacterial infections, including drug-resistant strains like methicillin-resistant Staphylococcus aureus (MRSA), necessitates innovative therapeutic solutions. Silver nanoparticles are promising for combating infections, but toxicity concerns emphasize the importance of factors like dosage, size, shape, and surface chemistry. Hence, exploring poloxamer as a stabilizing agent to reduce its toxicity and enhance the antibacterial effect on MRSA is investigated.
Methods
Silver nanoparticles stabilized with poloxamer (AgNPs@Pol) were synthesized through the chemical reduction method and characterized using UV–visible spectrophotometer, HR-TEM, DLS, and Zeta potential measurements. Subsequently, the antibacterial activity of AgNPs@Pol alone and in combination with methicillin against MRSA and methicillin-susceptible S. aureus (MSSA) was evaluated using the broth microdilution method.
Results
AgNPs@Pol showed significant efficacy against MRSA and MSSA, achieving a 100 % reduction in colony-forming units (CFU) at 9.7 μg/ml. The minimum inhibitory concentration (MIC) against MRSA and MSSA was 8.6 μg/ml and 4.3 μg/ml, respectively. A synergistic effect was observed when AgNPs@Pol was combined with methicillin. Treatment with AgNPs@Pol increased reactive oxygen species (ROS) production in both strains, contributing to its antibacterial activity. Real-time qPCR analysis indicated the downregulation of genes involved in antimicrobial resistance and cell adhesion in both strains. Further, the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay demonstrated low cytotoxicity for AgNPs@Pol against MCF-7, MG-63, and NIH-3T3 cell lines.
Conclusion
The developed AgNPs@Pol demonstrated extensive colloidal stability, potent antibacterial activity and synergistic effect with methicillin against MRSA and MSSA. Further studies in primary cells and in vivo models may validate its potential for clinical applications.
期刊介绍:
Microbial Pathogenesis publishes original contributions and reviews about the molecular and cellular mechanisms of infectious diseases. It covers microbiology, host-pathogen interaction and immunology related to infectious agents, including bacteria, fungi, viruses and protozoa. It also accepts papers in the field of clinical microbiology, with the exception of case reports.
Research Areas Include:
-Pathogenesis
-Virulence factors
-Host susceptibility or resistance
-Immune mechanisms
-Identification, cloning and sequencing of relevant genes
-Genetic studies
-Viruses, prokaryotic organisms and protozoa
-Microbiota
-Systems biology related to infectious diseases
-Targets for vaccine design (pre-clinical studies)