Ayman Bin Kamruddin, Hannah Sandison, Gaurav Patil, Mirco Musolesi, Mario di Bernardo, Michael J Richardson
{"title":"模拟第一人称放牧任务中的人类导航和决策动态。","authors":"Ayman Bin Kamruddin, Hannah Sandison, Gaurav Patil, Mirco Musolesi, Mario di Bernardo, Michael J Richardson","doi":"10.1098/rsos.231919","DOIUrl":null,"url":null,"abstract":"<p><p>This study investigated whether dynamical perceptual-motor primitives (DPMPs) could also be used to capture human navigation in a first-person herding task. To achieve this aim, human participants played a first-person herding game, in which they were required to corral virtual cows, called targets, into a specified containment zone. In addition to recording and modelling participants' movement trajectories during gameplay, participants' target-selection decisions (i.e. the order in which participants corralled targets) were recorded and modelled. The results revealed that a simple DPMP navigation model could effectively reproduce the movement trajectories of participants and that almost 80% of the participants' target-selection decisions could be captured by a simple heuristic policy. Importantly, when this policy was coupled to the DPMP navigation model, the resulting system could successfully simulate and predict the behavioural dynamics (movement trajectories and target-selection decisions) of participants in novel multi-target contexts. Implications of the findings for understanding complex human perceptual-motor behaviour and the development of artificial agents for robust human-machine interaction are discussed.</p>","PeriodicalId":21525,"journal":{"name":"Royal Society Open Science","volume":"11 10","pages":"231919"},"PeriodicalIF":2.9000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11522880/pdf/","citationCount":"0","resultStr":"{\"title\":\"Modelling human navigation and decision dynamics in a first-person herding task.\",\"authors\":\"Ayman Bin Kamruddin, Hannah Sandison, Gaurav Patil, Mirco Musolesi, Mario di Bernardo, Michael J Richardson\",\"doi\":\"10.1098/rsos.231919\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study investigated whether dynamical perceptual-motor primitives (DPMPs) could also be used to capture human navigation in a first-person herding task. To achieve this aim, human participants played a first-person herding game, in which they were required to corral virtual cows, called targets, into a specified containment zone. In addition to recording and modelling participants' movement trajectories during gameplay, participants' target-selection decisions (i.e. the order in which participants corralled targets) were recorded and modelled. The results revealed that a simple DPMP navigation model could effectively reproduce the movement trajectories of participants and that almost 80% of the participants' target-selection decisions could be captured by a simple heuristic policy. Importantly, when this policy was coupled to the DPMP navigation model, the resulting system could successfully simulate and predict the behavioural dynamics (movement trajectories and target-selection decisions) of participants in novel multi-target contexts. Implications of the findings for understanding complex human perceptual-motor behaviour and the development of artificial agents for robust human-machine interaction are discussed.</p>\",\"PeriodicalId\":21525,\"journal\":{\"name\":\"Royal Society Open Science\",\"volume\":\"11 10\",\"pages\":\"231919\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11522880/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Royal Society Open Science\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1098/rsos.231919\",\"RegionNum\":3,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/10/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Royal Society Open Science","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1098/rsos.231919","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Modelling human navigation and decision dynamics in a first-person herding task.
This study investigated whether dynamical perceptual-motor primitives (DPMPs) could also be used to capture human navigation in a first-person herding task. To achieve this aim, human participants played a first-person herding game, in which they were required to corral virtual cows, called targets, into a specified containment zone. In addition to recording and modelling participants' movement trajectories during gameplay, participants' target-selection decisions (i.e. the order in which participants corralled targets) were recorded and modelled. The results revealed that a simple DPMP navigation model could effectively reproduce the movement trajectories of participants and that almost 80% of the participants' target-selection decisions could be captured by a simple heuristic policy. Importantly, when this policy was coupled to the DPMP navigation model, the resulting system could successfully simulate and predict the behavioural dynamics (movement trajectories and target-selection decisions) of participants in novel multi-target contexts. Implications of the findings for understanding complex human perceptual-motor behaviour and the development of artificial agents for robust human-machine interaction are discussed.
期刊介绍:
Royal Society Open Science is a new open journal publishing high-quality original research across the entire range of science on the basis of objective peer-review.
The journal covers the entire range of science and mathematics and will allow the Society to publish all the high-quality work it receives without the usual restrictions on scope, length or impact.