{"title":"硬脂酰辅酶脱饱和酶抑制剂能有效诱导膀胱癌干细胞凋亡。","authors":"Yuchen Li, Chiyuan Piao, Chuize Kong","doi":"10.1186/s12935-024-03540-w","DOIUrl":null,"url":null,"abstract":"<p><p>Bladder cancer stands as one of the most prevalent cancers worldwide. While our previous research confirmed the significant role of stearoyl-CoA desaturase (SCD) in bladder cancer, the underlying reasons for its abnormal overexpression remain largely unknown. Moreover, the distinct response to SCD inhibitors between cancer stem cells (CSCs) and adherent cultured cell lines lacks clear elucidation. Therefore, in this experiment, we aim to conduct an analysis and screening of the SCD transcription start site, further seeking critical transcription factors involved. Simultaneously, through experimental validation, we aim to explore the pivotal role of endoplasmic reticulum stress/unfolded protein response in drug sensitivity among cancer stem cells. Additionally, our RNA-seq and lipid metabolism analysis revealed the significant impact of nervonic acid on altering the proliferative capacity of bladder cancer cell lines.</p>","PeriodicalId":9385,"journal":{"name":"Cancer Cell International","volume":"24 1","pages":"357"},"PeriodicalIF":5.3000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11520891/pdf/","citationCount":"0","resultStr":"{\"title\":\"Stearoyl CoA desaturase inhibition can effectively induce apoptosis in bladder cancer stem cells.\",\"authors\":\"Yuchen Li, Chiyuan Piao, Chuize Kong\",\"doi\":\"10.1186/s12935-024-03540-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Bladder cancer stands as one of the most prevalent cancers worldwide. While our previous research confirmed the significant role of stearoyl-CoA desaturase (SCD) in bladder cancer, the underlying reasons for its abnormal overexpression remain largely unknown. Moreover, the distinct response to SCD inhibitors between cancer stem cells (CSCs) and adherent cultured cell lines lacks clear elucidation. Therefore, in this experiment, we aim to conduct an analysis and screening of the SCD transcription start site, further seeking critical transcription factors involved. Simultaneously, through experimental validation, we aim to explore the pivotal role of endoplasmic reticulum stress/unfolded protein response in drug sensitivity among cancer stem cells. Additionally, our RNA-seq and lipid metabolism analysis revealed the significant impact of nervonic acid on altering the proliferative capacity of bladder cancer cell lines.</p>\",\"PeriodicalId\":9385,\"journal\":{\"name\":\"Cancer Cell International\",\"volume\":\"24 1\",\"pages\":\"357\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11520891/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cancer Cell International\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s12935-024-03540-w\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer Cell International","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12935-024-03540-w","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
Stearoyl CoA desaturase inhibition can effectively induce apoptosis in bladder cancer stem cells.
Bladder cancer stands as one of the most prevalent cancers worldwide. While our previous research confirmed the significant role of stearoyl-CoA desaturase (SCD) in bladder cancer, the underlying reasons for its abnormal overexpression remain largely unknown. Moreover, the distinct response to SCD inhibitors between cancer stem cells (CSCs) and adherent cultured cell lines lacks clear elucidation. Therefore, in this experiment, we aim to conduct an analysis and screening of the SCD transcription start site, further seeking critical transcription factors involved. Simultaneously, through experimental validation, we aim to explore the pivotal role of endoplasmic reticulum stress/unfolded protein response in drug sensitivity among cancer stem cells. Additionally, our RNA-seq and lipid metabolism analysis revealed the significant impact of nervonic acid on altering the proliferative capacity of bladder cancer cell lines.
期刊介绍:
Cancer Cell International publishes articles on all aspects of cancer cell biology, originating largely from, but not limited to, work using cell culture techniques.
The journal focuses on novel cancer studies reporting data from biological experiments performed on cells grown in vitro, in two- or three-dimensional systems, and/or in vivo (animal experiments). These types of experiments have provided crucial data in many fields, from cell proliferation and transformation, to epithelial-mesenchymal interaction, to apoptosis, and host immune response to tumors.
Cancer Cell International also considers articles that focus on novel technologies or novel pathways in molecular analysis and on epidemiological studies that may affect patient care, as well as articles reporting translational cancer research studies where in vitro discoveries are bridged to the clinic. As such, the journal is interested in laboratory and animal studies reporting on novel biomarkers of tumor progression and response to therapy and on their applicability to human cancers.